UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN

FACULTAD DE INGENIERIA

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERIA CIVIL

EVALUACIÓN DEL DESEMPEÑO SISMORRESISTENTE DE LA ESTRUCTURA DEL

PABELLÓN B DE LA INSTITUCIÓN EDUCATIVA ERNESTO DIEZ CANSECO,

YANAHUANCA – PASCO – 2018

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADO POR:

Bach. Alexis Manuel ROBLES VALLE

PASCO – PERÚ

2018

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERIA ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERIA CIVIL

EVALUACIÓN DEL DESEMPEÑO SISMORRESISTENTE DE LA ESTRUCTURA DEL PABELLÓN B DE LA INSTITUCIÓN EDUCATIVA ERNESTO DIEZ CANSECO, YANAHUANCA – PASCO – 2018

PRESENTADO POR: Bach. Alexis Manuel ROBLES VALLE

ASESOR Dr. Hildebrando Anival CONDOR GARCIA

Sustentado y aprobado ante la Comisión de Jurados:

Mg. Ramiro SIUCE BONIFACIO Presidente

Mg. José German RAMIREZ MEDRANO Miembro Ing. Pedro YARASCA CORDOVA Miembro

DEDICATORIA

A mi madre Eugenia.

Por ser el pilar fundamental en todo lo que soy, en toda mi educación, tanto académica, como de la vida, Gracias madre mía este logro también es tuyo.

RESUMEN

La presente investigación tiene como finalidad evaluar el desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco.

Los objetivos de desempeño seleccionados para su verificación corresponden a la propuesta del Comité Visión 2000 de la SEAOC (Asociación de Ingenieros Estructurales de California). Estos objetivos relacionan los niveles de desempeño que debe alcanzar la estructura frente a demandas sísmicas de diferente intensidad.

Considerando las propiedades de los materiales y secciones que componen la estructura se procedió a modelarla usando el software computacional SAP2000 v20.0.0, seguidamente y usando el análisis estático no lineal pushover se determinó la curva de capacidad que relaciona fuerzas cortantes y desplazamientos hasta el punto de falla de la estructura.

Con la curva de capacidad transformada en espectro de capacidad y los espectros de respuesta de los sismos de demanda se procede a ubicar el punto de desempeño de acuerdo a los procedimientos y criterios del ATC-40 (Consejo de Tecnología aplicada).

Finalmente, con la ubicación del punto de desempeño se determinó los objetivos de desempeño alcanzados por la estructura analizada, los cuales deben ser verificados con los objetivos inicialmente propuestos.

Los objetivos de desempeño alcanzados por la estructura en la dirección longitudinal (dirección XX), se encuentran en el rango funcional frente a los sismos ocasionales, en el rango más allá del colapso frente a sismos raros y sismos muy raros; en la dirección transversal (dirección YY), se encuentran en el rango operacional frente a sismos ocasionales, en el rango funcional frente a sismos raros y en el rango Seguridad de vida frente a sismos muy raros; además se determinó una

fuerza cortante basal máxima de 119584.830 kg. y un desplazamiento máximo de 16.429 cm. en la dirección longitudinal y una fuerza cortante máxima de 538848.010 kg. y un desplazamiento máximo de 20.513 cm. en la dirección transversal.

En conclusión, el desempeño sismorresistente de la estructura analizada no cumple con los objetivos de desempeño propuestos por el comité visión 2000.

ABSTRACT

The purpose of this research is to evaluate the seismic performance of the structure of pavilion B of the Ernesto Diez Canseco Educational Institution, Yanahuanca - Pasco.

The performance objectives selected for verification correspond to the proposal of the Vision 2000 Committee of the SEAOC (Association of Structural Engineers of California). These objectives relate the levels of performance that the structure must reach in front of seismic demands of different intensity.

Considering the properties of the materials and sections that make up the structure, we proceeded to model it using the SAP2000 v20.0.0 computer software, then using the non-linear pushover static analysis we determined the capacity curve that relates shear forces and displacements to the point of failure of the structure.

With the capacity curve transformed into the capacity spectrum and the response spectra of the demand earthquakes, the performance point is located according to the procedures and criteria of the ATC-40 (Applied Technology Council).

Finally, with the location of the performance point, the performance objectives reached by the structure analyzed were determined, which must be verified with the initially proposed objectives.

The performance objectives achieved by the structure in the longitudinal direction (direction XX), are in the functional range compared to the occasional earthquakes, in the range beyond the collapse in front of rare earthquakes and very rare earthquakes; in the transverse direction (YY direction), they are in the operational range against occasional earthquakes, in the functional range against rare earthquakes and in the range Safety of life against very rare earthquakes; In addition, a maximum basal cutting force of 119584.830 kg was determined. and a maximum displacement

of 16,429 cm. in the longitudinal direction and a maximum shearing force of 538848.010 kg. and a maximum displacement of 20,513 cm. in the transverse direction.

In conclusion, the seismic performance of the structure analyzed does not meet the performance objectives proposed by the vision 2000 committee.

CARÁTUL	A	. i
DEDICATO	DRIA	. ii
RESUMEN		iii
ABSTRACT	٢	. v
ÍNDICE		vii
LISTA DE T	ΓABLAS	. X
LISTA DE I	FIGURASx	iii
INTRODUC	CCIÓN	. 1
CAPITULO	Ι	. 3
PLANTEAN	MIENTO DEL PROBLEMA	. 3
1.1. DE'	TERMINACIÓN DEL PROBLEMA	. 3
1.2. FOI	RMULACIÓN DEL PROBLEMA	. 5
1.2.1.	Problema general	. 5
1.2.2.	Problemas específicos	. 5
1.3. OB	JETIVOS	. 6
1.3.1.	Objetivos generales	. 6
1.3.2.	Objetivos específicos	. 6
1.4. JUS	STIFICACION DEL PROBLEMA	. 6
1.5. IMI	PORTANCIA Y ALCANCES DE LA INVESTIGACIÓN	. 7
1.6. LIN	1ITACIONES	. 7
1.6.1.	Limitaciones económicas	. 7
1.6.2.	Limitaciones tecnológicas	. 8
CAPITULO	II	. 9
MARCO TH	EORICO	. 9
2.1. AN	TECEDENTES	. 9
2.2. BA	SE TEORICO – CIENTIFICOS	14
2.2.1.	Sismo	14
2.2.2.	Diseño por desempeño	14
2.2.3.	Niveles de desempeño	15
2.2.4.	Niveles de amenaza sísmica	23

ÍNDICE

2.2.5. Ot	bjetivos de desempeño	26
2.2.6. Ca	apacidad estructural	29
2.2.7. M	odelo inelástico de las secciones	30
2.2.8. M	odelo inelástico de los elementos barra (vigas-columnas)	31
2.2.9. In	cidencia de los muros de albañilería	37
2.2.10. Ar	nálisis estático no lineal pushover	40
2.2.11. Cu	ırva de capacidad	43
2.2.12. Se	ectorización de la curva de capacidad para la evaluación de estructuras	46
2.2.13. Pu	Into de desempeño	47
2.2.14. M	étodos para estimar el punto de desempeño	48
2.3. DEFIN	NICION DE TERMINOS	54
2.4. HIPOT	TESIS	57
2.4.1. Hi	ipótesis general	57
2.4.2. Hi	ipótesis especificas	57
2.5. IDENT	TIFICACIÓN DE LAS VARIABLES	57
2.5.1. Va	ariables independientes	57
2.5.2. Va	ariables dependientes	57
2.5.3. Op	peracionalización de las variables	58
CAPITULO III	[59
METODOLOG	SIA	59
3.1. TIPO I	DE INVESTIGACIÓN	59
3.2. DISEÑ	ÎO DE INVESTIGACIÓN	59
3.3. POBLA	ACIÓN MUESTRA	59
3.3.1. Po	oblación	59
3.3.2. M	uestra	59
3.4. METO	DOS DE INVESTIGACIÓN	60
3.4.1. M	étodo deductivo:	60
3.4.2. M	étodo descriptivo:	60
3.5. TÉCN	ICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	60
3.5.1. Té	écnicas de recolección de datos	60
3.5.2. Ins	strumentos de recolección de datos	60

3.6. TÉC	CNICAS DE PROCESAMIENTO Y ANALISIS DE DATOS	61
CAPITULO	IV	62
RESULTAD	DOS Y DISCUSIÓN	62
4.1. TRA	ATAMIENTO ESTADISTICO E INTERPRETACIÓN DE CUADROS	62
4.1.1.	Tamaño muestral	62
4.1.2.	Descripción de la estructura	63
4.1.3.	Propiedades de los materiales	64
4.1.4.	Parámetros sísmicos	65
4.1.5.	Análisis sísmico elástico	66
4.1.6.	Evaluación del desempeño de la estructura	75
4.2. PRE	ESENTACIÓN DE RESULTADOS, TABLAS, GRAFICOS, FIGURAS	107
4.2.1.	Desempeño de la estructura en dirección XX	107
4.2.2.	Desempeño de la estructura en dirección YY	110
4.3. PRU	JEBA DE HIPOTESIS	115
4.4. DIS	CUCIÓN DE RESULTADOS	115
CONCLUSI	ONES	119
RECOMEN	DACIONES	122
BIBLIOGRA	AFÍA	123
ANEXOS		125

LISTA DE TABLAS

Tabla 1. Descripción de los estados de daño y niveles de desempeño	. 17
Tabla 2. Niveles de desempeño de las estructuras	. 22
Tabla 3. Movimientos sísmicos de diseño	. 25
Tabla 4. Objetivos del desempeño sísmico recomendado para estructuras	. 28
Tabla 5. Objetivos de seguridad básica para estructuras convencionales	. 29
Tabla 6. Parámetros de modelado y criterios de aceptación numérica para procedimientos	
No lineales - vigas de concreto armado	. 35
Tabla 7. Parámetros de modelado y criterios de aceptación numérica para procedimientos	
No lineales - columnas de concreto armado	. 36
Tabla 8. Rangos de desplazamiento asociado a cada nivel de desempeño	. 47
Tabla 9. Fuerza cortante estática en la base	. 67
Tabla 10. Datos del espectro de diseño – dirección XX	. 68
Tabla 11. Datos del espectro de diseño – dirección YY	. 69
Tabla 12. Fuerza cortante dinámica en la base	. 70
Tabla 13. Comparación de las fuerzas cortantes estática y dinámica	. 70
Tabla 14. Derivas en eje AA, Pórtico 1,3,5,7 – dirección XX	. 71
Tabla 15. Derivas en eje BB, Pórtico 1,3,5,7 – dirección XX	. 71
Tabla 16. Derivas en eje DD, Pórtico 1,3,5,7 – dirección XX	. 71
Tabla 17. Derivas en eje AA, Pórtico 2,4,6 – dirección XX	. 72
Tabla 18. Derivas en eje BB, Pórtico 2,4,6 – dirección XX	. 72
Tabla 19. Derivas en eje DD, Pórtico 2,4,6 – dirección XX	. 72
Tabla 20. Derivas en eje AA, Pórtico 1,3,5,7 – dirección YY	. 73
Tabla 21. Derivas en eje BB, Pórtico 1,3,5,7 – dirección YY	. 73
Tabla 22. Derivas en eje DD, Pórtico 1,3,5,7 – dirección YY	. 73
Tabla 23. Derivas en eje AA, Pórtico 2,4,6 – dirección YY	. 74
Tabla 24. Derivas en eje BB, Pórtico 2,4,6 – dirección YY	. 74
Tabla 25. Derivas en eje DD, Pórtico 2,4,6 – dirección YY	. 74
Tabla 26. Datos de momento-rotación y criterios de aceptación,	
C1-30x60_P-M2-M3_1P, eje local 3-3, 1er nivel	. 76
Tabla 27. Datos de momento-rotación y criterios de aceptación,	
C1-30x60_P-M2-M3_2P, eje local 3-3, 2do nivel	. 78
Tabla 28. Datos de momento-rotación y criterios de aceptación,	
C1-30x60_P-M2-M3_3P, eje local 3-3, 3er nivel	. 80
Tabla 29. Datos de momento-rotación y criterios de aceptación,	
C1-30x60_P-M2-M3_1P, eje local 2-2, 1er nivel	. 82
Tabla 30. Datos de momento-rotación y criterios de aceptación,	
C1-30x60_P-M2-M3_2P, eje local 2-2, 2do nivel	. 84
Tabla 31. Datos de momento-rotación y criterios de aceptación,	

C1-30x60_P-M2-M3_3P, eje local 2-2, 3er nivel	. 86
Tabla 32. Datos de momento-rotación y criterios de aceptación,	
V-30x65_(P1,3,5,7_BA_1,2)	. 88
Tabla 33. Datos de momento-rotación y criterios de aceptación,	
V-30x45_(P1,3,5,7_BC_1,2)	88
Tabla 34. Datos de momento-rotación y criterios de aceptación,	
V-30x45_(P1,3,5,7_CB_1,2)	89
Tabla 35. Datos de momento-rotación y criterios de aceptación,	
V-30x45_(P1,3,5,7_CD_1,2)	89
Tabla 36. Datos de momento-rotación y criterios de aceptación,	
V-30x45_(P1,3,5,7_DC_1,2)	90
Tabla 37. Datos de momento-rotación y criterios de aceptación,	
V-30x45_(P1,3,5,7_BA_3)	90
Tabla 38. Datos de momento-rotación y criterios de aceptación,	
V-30*45_(P1,3,5,7_BC_3)	91
Tabla 39. Datos de momento-rotación y criterios de aceptación,	
V-30*45_(P1,3,5,7_CB_3)	91
Tabla 40. Datos de momento-rotación y criterios de aceptación,	
V-30*45_(P1,3,5,7_CD_3)	92
Tabla 41. Datos de momento-rotación y criterios de aceptación,	
V-30*45_(P1,3,5,7_DC_3)	92
Tabla 42. Datos de momento-rotación y criterios de aceptación,	
V-30*45_(P1,3,5,7_DE_3)	93
Tabla 43. Datos de momento-rotación y criterios de aceptación,	
V-30*65_(P2,4,6_BA_1,2)	93
Tabla 44. Datos de momento-rotación y criterios de aceptación,	
V-30*65_(P2,4,6_BD_1,2)	94
Tabla 45. Datos de momento-rotación y criterios de aceptación,	
V-30*65_(P2,4,6_DB_1,2)	94
Tabla 46. Datos de momento-rotación y criterios de aceptación,	
V-30*50_(P2,4,6_BA_3)	95
Tabla 47. Datos de momento-rotación y criterios de aceptación,	
V-30*50_(P2,4,6_BC_3)	95
Tabla 48. Datos de momento-rotación y criterios de aceptación,	
V-30*50_(P2,4,6_CB_3)	96
Tabla 49. Datos de momento-rotación y criterios de aceptación,	
V-30*50_(P2,4,6_CD_3)	96
Tabla 50. Datos de momento-rotación y criterios de aceptación,	
V-30*50_(P2,4,6_DC_3)	97
Tabla 51. Datos de momento-rotación y criterios de aceptación,	

V-30*50_(P2,4,6_DE_3)	97
Tabla 52. Datos de momento-rotación y criterios de aceptación, V-30*45_(PB_1,2,3)	98
Tabla 53. Datos de momento-rotación y criterios de aceptación, V-30*45_(PD_1,2,3)	98
Tabla 54. Datos de momento-rotación y criterios de aceptación, V-60*20_(PC_3)	99
Tabla 55. Longitud relativa de rótulas plásticas (Momento – Rotación) en columnas	100
Tabla 56. Longitud relativa de rótulas plásticas (Momento – Rotación) en vigas	100
Tabla 57. Fuerzas laterales por niveles que actúan en la estructura – dirección XX	101
Tabla 58. Fuerzas laterales por niveles que actúan en la estructura – dirección XX	101
Tabla 59. Ratios de masas modales participantes	102
Tabla 60. Sismos de diseño y su aceleración asociada	104
Tabla 61. Parámetros para determinar los espectros de demanda sísmica	104
Tabla 62. Datos de los espectros de demanda	105
Tabla 63. Rangos de desplazamiento para cada nivel de desempeño – dirección XX	107
Tabla 64. Rangos de desplazamiento para cada nivel de desempeño – dirección YY	111

LISTA DE FIGURAS

Figura 1. Relación entre objetivos de desempeño y costos relativos asociados	27
Figura 2. Curvatura de una sección	30
Figura 3. Diagrama momento – curvatura de una sección	30
Figura 4. Diagrama carga axial – momento (P-M) y carga axial – curvatura (P-Φ)	31
Figura 5. Idealización del daño en vigas	32
Figura 6. Idealización del daño equivalente	32
Figura 7. Obtención del diagrama momento – rotación	33
Figura 8. Idealización del diagrama momento – rotación	33
Figura 9. Idealización del diagrama momento – rotación	34
Figura 10. Modelado de rótulas y columnas en edificios	37
Figura 11. Configuración de un muro de albañilería	38
Figura 12. Puntal diagonal equivalente a la mampostería	38
Figura 13. Esquema del proceso del análisis pushover	40
Figura 14. Distribución de cargas laterales	41
Figura 15. Distribución vertical proporcional a la distribución de cortantes por piso	42
Figura 16. Distribución vertical proporcional a la forma del modo fundamental	42
Figura 17. Formación de rótulas en la curva de capacidad	44
Figura 18. Punto de fluencia efectiva	44
Figura 19. Criterio de las rigideces tangentes	45
Figura 20. Criterio de la rigidez tangencial horizontal	46
Figura 21. Criterio de las áreas iguales	46
Figura 22. Sectorización de la curva de capacidad	47
Figura 23. Punto de desempeño en la curva de capacidad	48
Figura 24. Curva de capacidad y Espectro de capacidad	49
Figura 25. Espectro de respuesta tradicional y espectro de demanda (ADRS)	51
Figura 26. Procedimiento B del espectro de capacidad después del paso 5	52
Figura 27. Procedimiento B del espectro de capacidad después del paso 8	53
Figura 28. Vista satelital de la Institución Educativa Ernesto Diez Canseco	63
Figura 29. Vista frontal y estructuración del pabellón B	63
Figura 30. Espectro de diseño - dirección XX	68
Figura 31. Espectro de diseño – dirección YY	69
Figura 32. Diagrama de interacción P-M2, C1-30x60, eje local XX (condición de cedencia)	75
Figura 33. Diagrama de interacción P-M3, C1-30x60, eje local YY (condición de cedencia) .	75
Figura 34. Diagrama momento – rotación y criterios de aceptación:	
C1-30x60_P-M2-M3_1P, eje local 3-3, 1er nivel.	77
Figura 35. Diagrama momento – rotación y criterios de aceptación:	
C1-30x60_P-M2-M3_2P, eje local 3-3, 2do nivel	79
Figura 36. Diagrama momento-rotación y criterios de aceptación:	

C1-30x60_P-M2-M3_3P, eje local 3-3, 3er nivel.	81
Figura 37. Diagrama momento-rotación y criterios de aceptación:	
C1-30x60_P-M2-M3_1P, eje local 2-2, 1er nivel.	83
Figura 38. Diagrama momento-rotación y criterios de aceptación:	
C1-30x60_P-M2-M3_2P, eje local 2-2, 2do nivel	85
Figura 39. Diagrama momento-rotación y criterios de aceptación:	
C1-30x60_P-M2-M3_3P, eje local 2-2, 3er nivel.	87
Figura 40. Diagrama momento-rotación y criterios de aceptación:	
V-30x65_(P1,3,5,7_BA_1,2)	88
Figura 41. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_BC_1,2)	88
Figura 42. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_CB_1,2)	89
Figura 43. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_CD_1,2)	89
Figura 44. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_DC_1,2)	90
Figura 45. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_BA_3)	90
Figura 46. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_BC_3)	91
Figura 47. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_CB_3)	91
Figura 48. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_CD_3)	92
Figura 49. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_DC_3)	92
Figura 50. Diagrama momento-rotación y criterios de aceptación:	
V-30x45_(P1,3,5,7_DE_3)	93
Figura 51. Diagrama momento-rotación y criterios de aceptación:	
V-30x65_(P2,4,6_BA_1,2)	93
Figura 52. Diagrama momento-rotación y criterios de aceptación:	
V-30x65_(P2,4,6_BD_1,2)	94
Figura 53. Diagrama momento-rotación y criterios de aceptación:	
V-30x65_(P2,4,6_DB_1,2)	94
Figura 54. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_BA_3)	95
Figura 55. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_BC_3) .	95
Figura 56. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_CB_3) .	96
Figura 57. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_CD_3) .	96
Figura 58. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_DC_3) .	97

Figura 59. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_DE_3) 97
Figura 60. Diagrama momento-rotación y criterios de aceptación: V-30x45_(PB_1,2,3)
Figura 61. Diagrama momento-rotación y criterios de aceptación: V-30x45_(PD_1,2,3)
Figura 62. Diagrama momento-rotación y criterios de aceptación: V-60x20_ (PC_3) 99
Figura 63. Curva de capacidad: dirección XX 102
Figura 64. Curva de capacidad: dirección YY 103
Figura 65. Falla de la estructura del análisis PUSH_X_NEG 103
Figura 66. Falla de la estructura del análisis PUSH_Y_NEG 103
Figura 67. Espectros de demanda sísmica 106
Figura 68. Curva de capacidad y modelo bilineal – dirección XX 107
Figura 69. Sectorización de la curva de capacidad – dirección XX 108
Figura 70. Obtención del punto de desempeño - Sismo ocasional - dirección XX 108
Figura 71. Sectorización de la curva de capacidad y punto de desempeño -
Sismo ocasional – dirección XX 109
Figura 72. Obtención del punto de desempeño - Sismo raro - dirección XX 109
Figura 73. Obtención del punto de desempeño - Sismo muy raro - dirección XX 110
Figura 74. Curva de capacidad y modelo bilineal – dirección YY 110
Figura 75. Sectorización de la curva de capacidad – dirección YY 111
Figura 76. Obtención del punto de desempeño - Sismo ocasional - dirección YY 112
Figura 77. Sectorización de la curva de capacidad y punto de desempeño -
Sismo ocasional – dirección YY 112
Figura 78. Obtención del punto de desempeño - Sismo raro - dirección YY 113
Figura 79. Sectorización de la curva de capacidad y punto de desempeño -
Sismo Raro – dirección YY 113
Figura 80. Obtención del punto de desempeño - Sismo muy raro - dirección YY 114
Figura 81. Sectorización de la curva de capacidad y punto de desempeño –
Sismo muy raro – dirección YY 114

INTRODUCCIÓN

El objetivo de este trabajo gira en torno al tema "Diseño por Desempeño", el cual es una herramienta de la ingeniería estructural para predecir el comportamiento de los edificios ante solicitaciones sísmicas. La importancia fundamental radica en que, desde el punto de vista del diseñador o evaluador se tendrá una respuesta certera sobre el nivel de daño que presentará la estructura después de un sismo.

Con el desarrollo de la ingeniería estructural basada en el desempeño en el mundo del diseño, ha habido la necesidad de que los diseñadores se alejen de las metodologías tradicionales de diseño lineal con el fin de predecir cómo las estructuras responderán a las cargas hasta el punto de falla. El creciente avance de la informática y la aparición de softwares, dan lugar a la creación de métodos de análisis más complejos, que pasan del análisis lineal al análisis no lineal. Estos métodos contribuyen a mejorar el cálculo estructural y hacerlo cada vez más riguroso.

Con el objetivo de conocer el desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca – Pasco, se debe obtener su curva de capacidad utilizando el análisis estático no lineal pushover. Dicha curva transformada en espectro de capacidad es comparada con los espectros de respuesta de las demandas sísmicas, con la finalidad de conocer el desempeño de la estructura ante diferentes y posibles escenarios sísmicos. Cabe resaltar que la información en la cual se basó esta tesis abarca fuentes como publicaciones, libros, investigaciones, los códigos ATC-40, SEAOC (Committee vision 2000), ASCE 41-13 y por supuesto las respectivas normas del Reglamento Nacional de Edificaciones.

Seguidamente presentamos el estudio, cuya estructura comprende los siguientes capítulos y rubros:

CAPITULO I: PLANTEAMIENTO DEL PROBLEMA. En donde se describe el problema de la investigación, su formulación, los objetivos, la justificación, la importancia, alcances y limitaciones de la investigación.

CAPITULO II: MARCO TEÓRICO. Comprende los antecedentes del estudio, bases teórico científicos que respaldan la tesis, definición de términos básicos, las hipótesis, las variables y su operacionalización.

CAPITULO III: METODOLOGÍA. Explica el tipo, diseño y método de la investigación, describe la población y muestra, así como las técnicas e instrumentos de recolección de datos, técnicas de procesamiento y análisis de datos.

CAPITULO IV: RESULTADOS Y DISCUCIÓN. Se presentan los resultados y la discusión de estos. En suma, este capítulo hace referencia a qué es lo que finalmente se encontró al término de la investigación; que significan realmente los resultados obtenidos.

Seguidamente, se precisan las conclusiones y las recomendaciones de la investigación.

Finalmente, se incluyen anexos: Ficha técnica de inspección, Modelo inelástico de los elementos estructurales con ayuda del programa PTC MATHCAD PRIME 4.0, Memoria de cálculo de la evaluación del desempeño sismorresistente usando el software SAP2000 v20.0.0, Planos replanteados de la estructura del pabellón B y Panel fotográfico.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. DETERMINACIÓN DEL PROBLEMA

Los sismos ocurridos en el mundo siempre han causado grandes pérdidas de vidas humanas y de materiales. La energía acumulada en la litosfera es liberada a través de movimientos bruscos del terreno, los sismos se propagan en forma de ondas en el suelo generando daños en forma directa e indirecta en las zonas pobladas, dependiendo de la localización de su epicentro, las características geológicas, el tipo de falla entre otros.

El Perú está ubicado en una zona altamente sísmica conocida como el Cinturón de Fuego del Pacífico, esta zona concentra el 80% de la actividad sísmica en el mundo. El Cinturón de Fuego del Pacifico comprende las costas del Océano Pacífico de las tres américas, las islas Aleutianas, Japón, Filipinas y Nueva Zelanda. La actividad sísmica en esta zona está asociada al proceso de subducción de la placa Oceánica de Nazca que se introduce por debajo de la placa Continental Sudamericana.

Son numerosos los sismos que han ocurrido en nuestro país, dejando gran cantidad de muertes y serios daños en la infraestructura. En la mayoría de los casos, los daños son debido a la vulnerabilidad de las edificaciones originada por malas configuraciones estructurales, malas técnicas constructivas, malos materiales, entre otros.

Algunos de los sismos importantes ocurridos en el Perú son: Lima y Callao de 8.1 grados Richter (17/10/1966), Huaraz – Ancash de 7.9 grados Richter (31/05/1970), Lima de 7.6 grados Richter (03/10/1974), Nazca de 6.4 grados Richter (12/11/1996), Arequipa de 8.4 grados Richter (23/06/2001), Pisco – Ica de 7.9 grados Richter (15/08/2007).

"Los códigos sísmicos modernos, que intentan reflejar grandes avances en conocimiento y entendimiento de una manera muy simple, no son transparentes sobre el nivel esperado de comportamiento o respuesta del sistema completo". (Bertero, 1992).

Nuestra Norma de Diseño Sismoresistente E-030, así como la mayoría de normas sísmicas, solo consideran un nivel de amenaza sísmica (denominado sismo "raro"). Al diseñar para un solo nivel de intensidad del sismo tal como manda la norma peruana E-030, se produce incertidumbre de su buen comportamiento o desempeño estructural para los diferentes niveles de intensidad del sismo. "El diseño en la condición límite del sismo de diseño no es verificado o calibrado contra las demandas o solicitaciones de sismos por lo que no hay ninguna garantía sobre la capacidad real de la estructura bajo estas condiciones" (Piqué, 2008).

Entonces al considerar en la norma E-030 un solo nivel de intensidad del sismo, los diseños elásticos (lineales) son incompletos para predecir un desempeño adecuado de las estructuras, principalmente si se trata de edificaciones esenciales.

En un principio las respuestas que interesan, estaban basadas en el diseño por resistencia, estimado la demanda sísmica, pero este criterio ha cambiado y ahora interesan las que se encuentran basadas en los desplazamientos, es decir en la capacidad de las estructuras de disipar energía incursionando en el rango inelástico (no lineal) hasta llegar al colapso de la estructura, esto significa que las estructuras sean en gran medida tolerables a deformaciones impuestas.

Actualmente existen técnicas avanzadas de análisis no-lineal de estructuras, entre las que se encuentra el análisis estático no lineal Pushover.

Es esencial realizar un análisis que nos permita investigar el comportamiento de la estructura frente a determinados sismos, debido a que nos brinda indicadores para mitigar daños a la estructura frente a determinados sismos.

En la actualidad no existe forma de predecir un evento sísmico, pero se hace uso de la teoría del "silencio sísmico", basado en la probabilidad de ubicar zonas donde no se ha liberado energía durante un largo periodo de tiempo, teniendo como ejemplo la costa del Perú que presenta un silencio sísmico por casi 50 años. La ciudad de Yanahuanca, calificada como zona de riesgo sísmico 3, por su cercanía a la costa peruana, nos hace pensar que está propensa a experimentar un evento sísmico de gran magnitud. Por este motivo preocupa la vulnerabilidad de sus edificaciones esenciales, porque de la estabilidad y buen funcionamiento de las mismas, luego de los sismos, dependerá salvar muchas vidas.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. Problema general

¿Cuál es el desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco?

1.2.2. Problemas específicos

 ¿Cuáles son los puntos de desempeño de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco? ¿Cuáles son los resultados del análisis estático no lineal pushover frente al análisis recomendado por la norma E-030?

1.3. OBJETIVOS

1.3.1. Objetivos generales

Evaluar el desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco.

1.3.2. Objetivos específicos

- Establecer los puntos de desempeño de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco.
- Establecer los resultados del análisis estático no lineal pushover frente al análisis recomendado por la norma E-030.

1.4. JUSTIFICACION DEL PROBLEMA

Siendo el Perú un país altamente sísmico, y ante la poca claridad del nivel esperado de comportamiento sísmico de las estructuras diseñadas con la norma E-030; se hace necesario evaluar nuestras edificaciones con técnicas modernas basadas en el desempeño sismorresistente, que permite verificar si las estructuras responden, a niveles definidos de sismo, dentro de niveles de confiabilidad definidos.

Por lo expuesto surge la idea de desarrollar la tesis con la intención de evaluar el desempeño sismorresistente de uno de los pabellones de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco y verificar si cumple con lo expresado en la norma E-030: Las edificaciones de categoría esencial A2 deben servir de refugio después de un desastre (nivel de desempeño funcional).

Con la presente investigación también se pretende brindar información confiable, que pueda servir como referencia para profesionales y estudiantes de ingeniería civil, interesados en el área de estructuras, que deseen aprender una metodología de evaluación basado en desempeño sísmico, dado que, en la mayoría de códigos sísmicos, el desempeño es abordado de forma implícita más que explícita.

1.5. IMPORTANCIA Y ALCANCES DE LA INVESTIGACIÓN

La presente investigación pretende mostrar la forma en que la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca – Pasco, se comportaría frente a la ocurrencia de eventos sísmicos de diferente intensidad.

Para determinar el desempeño de la estructura se usó el análisis estático no lineal pushover, conjuntamente con la propuesta del comité visión 2000 – SEAOC, los criterios y procedimientos del ATC-40 y ASCE 41-13

Los resultados obtenidos dependerán de variables como las propiedades de los elementos estructurales y de la demanda sísmica que se filtre en el software computacional SAP2000 v20.0.0.

1.6. LIMITACIONES

1.6.1. Limitaciones económicas

En la presente investigación se tiene limitaciones económicas, ya que se necesita pruebas o ensayos que proporcionen datos con mayor precisión y certeza, por ejemplo, el ensayo de detección de barras de refuerzo y medición del recubrimiento, lo cual permitiría conocer a ciencia cierta el diámetro de la varilla de acero, separación entre ellas y el recubrimiento de cada elemento estructural de la edificación.

1.6.2. Limitaciones tecnológicas

A raíz de la limitación económica, no se puede hacer uso del instrumento de detección de barras de refuerzo y medición del recubrimiento.

CAPITULO II

MARCO TEORICO

2.1. ANTECEDENTES

Se obtuvo investigaciones bibliográficas a nivel nacional e internacional.

- A nivel nacional:

DESEMPEÑO SÍSMICO DE UN EDIFICIO APORTICADO DE SEIS PISOS DISEÑADO CON LAS NORMAS PERUANAS DE EDIFICACIONES.

Autores: Bach. FERNADEZ VILLEGAS, Jhonny A.- Bach. NAVARRO LOPÉZ, Cesar E. Institución: Pontificia Universidad Católica del Perú.

Año: 2006.

Resumen:

Tuvo como objetivo diseñar y evaluar un edificio aporticado de 6 pisos con planta rectangular

de 33x22m, y ubicado en la zona peruana de mayor sismicidad sobre suelo bueno.

Para el diseño se emplearon las normas peruanas, para la evaluación del desempeño se usó la propuesta del Comité Visión 2000 del SEAOC y para estimar la respuesta, procedimientos de análisis no lineal basados en espectros de demanda y capacidad.

El diseño condujo a un edificio muy rígido (columnas de 70x70cm, vigas 25x50) con una deriva máxima de 6.8 0/00, bajo las solicitaciones de las normas peruanas (terremoto de 475 años de periodo de retorno).

Los resultados muestran que la estructura tiene, respecto a la fluencia efectiva, una ductilidad de 11.3 y una sobre resistencia de 1.2. Respecto a la demanda del código el edificio alcanzó una sobre resistencia al colapso de 3.0.

La evaluación del desempeño efectuado muestra que en un sismo frecuente la estructura presentaría pequeñas incursiones inelásticas y quedaría en estado funcional. En un sismo raro la ductilidad global demandada sería reducida, alrededor de 3.2, y la estructura quedaría en estado funcional. De acuerdo a la propuesta del SEAOC el edificio tendría un excelente comportamiento en sismos raros y un comportamiento aceptable en sismos frecuentes.

DISEÑO SISMICO POR DESEMPEÑO DE ESTRUCTURAS DE ALBAÑILERIA CONFINADA

Autor: Ing. SANTANA TAPIA, Ronald Daniel

Institución: Universidad Nacional de Ingeniería

Año: 2012

Resumen:

Tuvo como objetivo diseñar y evaluar el desempeño de una estructura de albañilería confinada diseñado con la norma E.030 y E.070, por medio del análisis no lineal estático y dinámico. Se basó en los criterios de Visión 2000, ATC-40 y el método de espectro capacidad.

Como resultado, la estructura tuvo un comportamiento casi elástico para sismo de servicio y un desempeño aceptable para un sismo máximo.

El autor también indicó tres puntos muy importantes, 1) que se debían recopilar datos sísmicos en la zona central del Perú, 2) que las estructuras de carácter esencial deben ser analizadas con un análisis no lineal para un óptimo reforzamiento y 3) que no existen muchos estudios respecto al análisis no lineal en estructuras de albañilería ni a nivel nacional ni internacional, por lo cual se debe tener mucho cuidado a la hora de realizar un análisis sobre este tipo de estructura.

DESEMPEÑO SISMORRESISTENTE DEL EDIFICIO F DE LA UNIVERSIDAD NACIONAL DE CAJAMARCA

Autor: Bach. BOLAÑOS TAUMA, Miriam Ivonne

Institución: Universidad Nacional de Cajamarca

Año: 2015

Resumen:

Tuvo como objetivo determinar el comportamiento sismorresistente del edificio 4 "F" de la Universidad Nacional de Cajamarca, aplicando el análisis estático no lineal pushover, junto con el Procedimiento B del ATC- 40, y los criterios del SEAOC, propuesta del Comité VISION 2000.

Para determinar el desempeño sismorresistente del edifico en estudio, primero se realizó el ensayo del esclerómetro y se verificó la resistencia de diseño, para luego realizar el modelamiento en el software SAP 2000, en el cual se simuló como es que la estructura incursionará en dichos sismos. Finalmente, el nivel de desempeño de la estructura se obtiene superponiendo las gráficas del espectro de demanda y el espectro de capacidad (representación de la curva de capacidad en coordenadas aceleración versus desplazamiento). Los niveles de desempeño sismorresistente alcanzados por la estructura satisfacen lo propuesto por el Comité Visión 2000, tanto para la norma

E-030, Sismo Raro y Sismo Muy raro, sin embargo, en el caso del Sismo Ocasional no satisface dichas recomendaciones; y se espera que la estructura sufra daños importantes.

- A Nivel Internacional:

DISEÑO SÍSMICO BASADO EN DESEMPEÑO PARA UNA EDIFICACIÓN ESENCIAL DE CONCRETO REFORZADO

Autor: Arq. SANCHEZ AGUILAR, Marco A.

Institución: Instituto Tecnológico y de Estudios Superiores de Monterrey - México

Año: 2010

Resumen:

Desarrolla una metodología del diseño por desempeño utilizando análisis estáticos no lineales en un edificio de concreto armado, ubicado en una zona de alta actividad sísmica y catalogada como edificación esencial en caso de emergencia urbana, para lo cual se tiene el objetivo general: diseñar y evaluar el comportamiento de un edificio esencial con los conceptos del diseño basado en desempeño. Se basó en los criterios de FEMA, VISION 2000 y ATC-40.

Obtuvo resultados como: el comportamiento de los elementos y los límites de desempeño de la estructura por medio de la curva de capacidad.

DISEÑO POR DESEMPEÑO DE ELEMENTOS ESTRUCTURALES DE HORMIGÓN ARMADO MEDIANTE LOS CÓDIGOS FEMA, UTILIZANDO ETABS

Autores: Bach. ALEMÁN GARCIA, Luis X. - Bach. NARANJO QUIMBIULCO, Luis F. Institución: Escuela Politécnica del Ejército – Ecuador

Año: 2011

Resumen:

Tuvo como objetivo general, diseñar una edificación con la norma ecuatoriana y mejorar su desempeño con el uso de los criterios del código FEMA y el método de los coeficientes.

Se obtuvieron resultados no satisfactorios en la etapa de diseño bajo norma, dado que, apenas podían obtener el desempeño de seguridad de vida, por lo cual, mejoraron el comportamiento de los elementos mediante tablas recomendadas por FEMA. Recomendaron que estudios posteriores consideren el sistema de suelo - estructura durante el modelamiento.

DISEÑO SISMO RESISTENTE POR DESEMPEÑO Y SUS EFECTOS EN EL COMPORTAMIENTO ESTRUCTURAL

Autor: Bach. PÉREZ CRUZ, José Luis.

Institución: Universidad Técnica de Ambato - Ecuador

Año: 2013

Resumen:

Tuvo como objetivo comparar el método basado en desempeño frente al método de la norma ecuatoriana. Se basó en los criterios de FEMA y el método de espectro-capacidad para el punto de desempeño frente a distintas demandas sísmicas.

Concluyó que la estructura diseñada, al ser evaluada mediante el punto de desempeño, cumplía con lo esperado, sin embargo, al ser evaluado por medio de derivas, se encontraba deficiencia al seleccionar las secciones de los elementos porque podían presentar un desempeño local inadecuado para distintas demandas.

2.2. BASE TEORICO – CIENTIFICOS

2.2.1. Sismo

Los sismos, terremotos o temblores, son vibraciones de la corteza terrestre, generada por distintos fenómenos, como la actividad volcánica, la caída de los techos de cavernas subterráneas y hasta por explosiones. Sin embargo, los sistemas más severos e importantes desde el punto de vista de la ingeniería, son los de origen tectónico, que se deben a desplazamientos bruscos de las grandes placas en que esta subdividida la corteza terrestre. Las presiones que se generan en la corteza por los flujos de magma desde el interior de la tierra llegan a vencer la fricción que mantiene en contacto los bordes de las placas y produce caídas de esfuerzo y liberación de enormes cantidades de energía almacenadas en la roca. La energía se libera principalmente en forma de ondas vibratorias que se propagan a grandes distancias a través de la roca.

Las vibraciones de la corteza terrestre ponen en peligro las edificaciones que sobre ellas se desplazan, debido al movimiento generado en su base. Por los movimientos vibratorios de las masas de los edificios, se generan las fuerzas de inercia que inducen esfuerzos importantes en los elementos de la estructura y que pueden conducir a la falla.

2.2.2. Diseño por desempeño

El Diseño Sísmico Basado en el Desempeño, es una concepción de la ingeniería estructural que predice el comportamiento de los edificios ante diversas solicitaciones sísmicas, de una manera más real y confiable.

La importancia fundamental del diseño por desempeño radica en que, desde el punto de vista del diseñador, se va a tener una respuesta certera sobre el nivel de daño o desempeño que presentará la estructura después de un sismo. De esta manera, se asegura un diseño adecuado según la importancia de la edificación a construir, así mismo, permite a los inversionistas o clientes poder cuantificar financieramente los riesgos esperados en sus edificios.

El diseño sísmico basado en desempeño no está limitado a nuevas construcciones. Con él, las estructuras existentes pueden ser evaluadas y/o adaptadas a objetivos de desempeño establecidos y confiables.

2.2.3. Niveles de desempeño

Un nivel de desempeño describe un estado límite de daño discreto. Representa una condición limite o tolerable establecida en función de tres aspectos fundamentales: (a) los posibles daños físicos sobre los componentes estructurales y no estructurales, (b) la amenaza sobre la seguridad de los ocupantes de la edificación, inducida por estos daños, y (c) la funcionalidad de la edificación posterior al sismo.

Está compuesto por la combinación de un nivel seleccionado de desempeño estructural y un nivel seleccionado de desempeño no estructural.

El nivel de desempeño estructural describe el estado límite de daño del sistema estructural, y el nivel de desempeño no estructural, describe el estado límite de daño de componentes no estructurales. Estos niveles describen el comportamiento esperado de la estructura, o alternativamente, cuánto daño y perdidas económicas pueden ocurrir.

A continuación, se presenta una breve descripción de los niveles establecidos por dos de los trabajos más completos realizados hasta el momento: El ATC-40 y el Comité Visión 2000 (SEAOC)

Para la presente investigación se tomará en cuenta el criterio del Comité Visión 2000.

2.2.3.1. Propuesta del Comité Visión 2000 – SEAOC (Asociación de Ingenieros Estructurales de California)

Comprende 4 niveles de desempeño:

A. Operacional:

Corresponde a un nivel en el cual no ocurren esencialmente daños. La edificación permanece completamente segura para sus ocupantes. Todo el contenido y los servicios de la edificación permanecen operacionales y disponibles para su uso. En general no se requieren reparaciones.

B. Funcional

En este nivel se presentan daños moderados en los elementos no estructurales y en el contenido de la edificación, e incluso algunos daños leves en los elementos estructurales. El daño es limitado y no compromete la seguridad de la estructura para continuar siendo ocupada inmediatamente después del sismo, no obstante, los daños en algunos contenidos y componentes no estructurales pueden interrumpir parcialmente algunas funciones normales. En general se requieren algunas reparaciones menores.

C. Seguridad de vida

Está asociado a la ocurrencia de daños moderados en elemento estructurales y no estructurales, así como en algunos contenidos de la construcción. La rigidez lateral de la estructura y la capacidad de resistir cargas laterales adicionales, se ven reducidas, posiblemente en un gran porcentaje, sin embargo, aún existe un margen de seguridad frente al colapso. Los daños producidos pueden impedir que la estructura sea ocupada inmediatamente después del

sismo, con lo cual, es probable que sea necesario proceder a su rehabilitación, siempre y cuando sea viable y se justifique desde un punto de vista económico.

D. Próximo al colapso

La degradación de la rigidez lateral y la capacidad resistente del sistema compromete la estabilidad de la estructura aproximándose al colapso. Los servicios de evacuación pueden verse interrumpidos por fallos locales, aunque los elementos que soportan las cargas verticales continúan en funcionamiento. Bajo estas condiciones, la estructura es insegura para sus ocupantes y el costo de su reparación puede no ser técnicamente viable.

Tabla 1.

D		• • •	1	1	, 1	1	1~		• 1		1	1	~
	OCCVI	ncion	do	Inc	octadoc	10	dano	٦,	nival	00	an	docon	inono
$\boldsymbol{\nu}$	escri	ντισπ	ue	ιOS	esiduos	ue	uuno	v	nivei	63	ue	uesen	weno
								~					

Estado	Nivel de	Descripción de los Daños					
de Daño	Desempeño	Descripcion de los Dallos					
		Daño estructural y no estructural despreciable o nulo.					
Despreciable	Operacional	Los sistemas de evacuación y todas las instalaciones					
		continúan prestando sus servicios.					
		Agrietamiento en elementos estructurales. Daño entre leve y					
Leve	Funcional	moderado en contenidos y elementos arquitectónicos. Los					
Leve	Puncional	sistemas de seguridad y evacuación funcionan con					
		normalidad.					
		Daños moderados en algunos elementos. Pérdida de					
		resistencia y rigidez del sistema resistente de cargas latera					
Moderado	Seguridad	El sistema permanece funcional. Algunos elementos no					
		estructurales y contenidos pueden dañarse.					
		Puede ser necesario cerrar el edificio temporalmente.					
	Próximo al	Daños severos en elementos estructurales. Fallo de elementos					
Severo	Colanso	secundarios, no estructurales y contenidos.					
	Colapso	Puede llegar a ser necesario demoler el edificio.					
Completo	Colanso	Pérdida parcial o total de soporte. Colapso parcial o total. No					
Compieto	Compso	es posible la reparación.					

Fuente: SEAOC (Comité Visión 2000, 1995)

2.2.3.2. Propuesta del Consejo de Tecnología Aplicado (ATC-40)

Corresponden a una combinación de los niveles utilizados para los elementos estructurales y los niveles correspondientes a los elementos no-estructurales, ambos definidos de forma independiente:

A. Niveles para los elementos estructurales

Se precisan tres niveles o estados de daño discretos: Ocupación inmediata, Seguridad y Estabilidad estructural. Estos tres niveles pueden ser utilizados directamente para definir criterios técnicos en los procesos de evaluación y rehabilitación de estructuras. Adicionalmente, se establecen dos rangos intermedios: Daño controlado y Seguridad limitada. Estos rangos intermedios permiten discriminar, de una forma más adecuada y útil, el nivel de desempeño de la estructura. Esto es de gran utilidad en el caso de ser necesaria una evaluación o un reforzamiento de una estructura en particular. Estos niveles se identifican por la abreviación, SP-n (SP son las siglas de "Structural Performance" y n es un número que varía entre 1 y 6).

• Ocupación inmediata, SP-1

Los daños son muy limitados y de tal magnitud, que el sistema resistente de cargas laterales y verticales permanece prácticamente en las mismas condiciones de capacidad y resistencia que antes de ocurrido el sismo. No se presentan pérdidas de vidas humanas y la estructura funciona con normalidad.

• Daño controlado, SP-2

Corresponde a un estado de daño que varía entre los límites de ocupación inmediata y seguridad. La vida de los ocupantes no está en peligro, aunque es posible que estos puedan verse afectados.

• Seguridad, SP-3

Los daños después del sismo no agotan por completo los márgenes de seguridad existentes frente a un posible colapso parcial o total de la estructura. Pueden producirse algunos heridos tanto en el interior como en el exterior, sin embargo, el riesgo de la vida de los ocupantes debido de un fallo de los elementos estructurales es muy bajo. Es posible que sea necesario reparar la estructura antes de ser ocupada de nuevo, siempre y cuando sea factible y rentable desde el punto de vista económico.

• Seguridad limitada, SP-4

Corresponde a un estado de daño entre los niveles de seguridad y estabilidad estructural, en el que algunas partes de la estructura pueden requerir un reforzamiento para poder garantizar el nivel de seguridad.

• Estabilidad estructural, SP-5

Este nivel corresponde al estado de daño limite después de ocurrido un sismo en el cual el sistema estructural está muy cerca de experimentar un colapso parcial o total. Se producen daños sustánciales, perdidas de rigidez y resistencia en los elementos estructurales. A pesar de que el sistema de cargas verticales continúa funcionando, hay un alto riesgo de que se produzca el colapso por causa de posibles réplicas. Es muy probable que los daños en las estructuras más antiguas sean técnica y económicamente irreparables.

• No considerado, SP-6

Este no es un nivel de desempeño, pero es útil en algunas ocasiones que requieran evaluar los daños sísmicos no estructurales o realizar un reforzamiento.

B. Niveles para los elementos no estructurales

Se consideran 4 niveles de desempeño correspondientes a estados discretos de daño para los elementos no estructurales: operacional, ocupación inmediata, seguridad y amenaza reducida. Estos niveles se representan con la abreviación NP-n. (NP son las siglas de "Nonstructural Performance" y n es una letra que toma valores entre A y E).

• Operacional, NP-A

Los elementos no estructurales, maquinarias y sistemas del edificio continúan en su sitio y funcionando con normalidad después del sismo.

• Ocupación inmediata, NP-B

A pesar de que los elementos no estructurales y sistemas permanecen en su sitio, pueden presentarse algunas interrupciones en el funcionamiento de las maquinarias y equipos. Algunos servicios externos pueden no estar disponibles, aunque esto no compromete la ocupación del edificio.
• Seguridad, NP-C

Pueden presentarse daños severos en algunos elementos no estructurales tanto dentro como fuera del edificio, sin que se llegue al colapso, ni se ponga en peligro la seguridad de los ocupantes. Los sistemas, equipos y maquinarias pueden verse seriamente afectados, requiriendo en algunos casos ser reparados o en el peor de los casos, reemplazados.

• Amenaza reducida, NP-D

Se presentan daños severos en elementos no estructurales, contenidos y sistemas, pero sin llegar al colapso o al fallo de grandes elementos, como por ejemplo parapetos y muros exteriores de mampostería, entre otros, que puedan ocasionar heridas a grupos de personas.

• No considerado, NP-E

No es un nivel de desempeño y se usa para indicar que no se han evaluado los elementos no estructurales, a menos que tengan un efecto directo sobre la respuesta estructural, como por ejemplo los muros de mampostería de relleno o las particiones.

C. Niveles para las estructuras

En la siguiente tabla se muestran las combinaciones (Propuestas en el ATC-40) de los niveles de desempeño de los elementos estructurales y los elementos no estructurales.

Estas combinaciones representan el comportamiento global del edificio. Una descripción detallada de cada una de estas combinaciones puede consultarse en la referencia mencionada. No obstante, entre ellas es posible distinguir cuatro niveles de desempeño fundamentales para una estructura. los cuales han sido resaltados en la siguiente tabla y se describe a continuación

Niveles de	Niveles de Desempeño Estructural					
Desempeño no Estructural	SP1	SP2	SP3	SP4	SP5	SP6
NP-A	1-A Operacional	2-A	NR	NR	NR	NR
NP-B	1-B Ocupación Inmediata	2-B	3-B	NR	NR	NR
NP-C	1-C	2-C	3-C Seguridad	4-C	5-C	6-C
NP-D	NR	2-D	3-D	4-D	5-D	6-D
NP-E	NR	NR	3-E	4-E	5-E Estabilidad Estructural	No Aplicable
NR: Combinación No Recomendada						

Tabla 2. Niveles de desempeño de las estructuras

Fuente: ATC 40, 1996

• Operacional 1-A:

Los daños estructurales son limitados y los daños en los sistemas y elementos no estructurales no impiden que la estructura continúe funcionando con normalidad después el sismo. Adicionalmente, las reparaciones que son necesarias no impiden la ocupación del edificio, por los cual este nivel se asocia con un estado de funcionalidad.

• Ocupación inmediata 1-B

Corresponde al nivel de desempeño más utilizado para estructuras esenciales, como es el caso por ejemplo de los hospitales. Se espera que lo diferentes espacios y sistemas de la estructura puedan seguir siendo utilizados después del sismo, a pesar de que pueden ocurrir algunos daños en los contenidos, se mantiene la seguridad de los ocupantes. • Seguridad 3-C

La probabilidad de pérdidas de vidas humanas es prácticamente nula. Este nivel corresponde al desempeño esperado de la estructura con la aplicación de los códigos corrientes. Se presentan daños limitados en los elementos estructurales y algunos elementos no estructurales como acabados y fachadas, entre otros, pueden tallar, sin que esto ponga en peligro la seguridad de los ocupantes.

• Estabilidad estructural 5-E

El margen de seguridad del sistema resistente de cargas laterales se encuentra prácticamente al límite y la probabilidad del colapso ante la ocurrencia de posibles réplicas es bastante alta; no obstante, el sistema de cargas verticales continúa garantizando la estabilidad del edificio. Los daños no estructurales no requieren ser evaluados debido al elevado nivel de daños en los elementos estructurales. No se garantiza la seguridad de los ocupantes ni transeúntes, por lo que se sugiere desalojar y, en algunos casos, demoler la estructura.

2.2.4. Niveles de amenaza sísmica

La amenaza sísmica debida al movimiento del terreno debe contemplar la ubicación del edificio con respecto a las fallas que existan, y las características geológicas regionales y en sitio. El alcance, para la cual estas amenazas pueden afectar el desempeño de la estructura depende de la magnitud del sismo, la distancia a la fuente, la dirección de propagación de la ruptura de falla, y las características geológicas de la región y locales. El efecto de cada uno de estos componentes de la amenaza, debe ser considerado e investigado.

Para permitir aplicaciones prácticas del diseño basado en el desempeño, es necesario seleccionar una serie de eventos sísmicos discretos que pueden ocurrir y que representan el rango de severidad sísmica para un desempeño particular de la estructura deseado. Estos eventos sísmicos discretos se denomina movimientos sísmicos de diseño, y su definición varia de un sitio a otro, dependiendo tanto de la sismicidad de la región en la cual está localizada la estructura, como de los niveles social y económicamente aceptables del daño por parte de las instituciones responsables, los propietarios y usuarios de las estructuras.

Se presentan a continuación, los movimientos sísmicos de diseño que deben considerarse de acuerdo al Comité Visión 2000 - SEAOC y al ATC-40.

2.2.4.1. Propuesta del Comité Visión 2000 – SEAOC

Los movimientos sísmicos de diseño son expresados por el Comité Visión 2000 en términos de un intervalo de recurrencia media o de una probabilidad de excedencia. El intervalo de recurrencia media, por ejemplo 475 años, es una expresión del periodo promedio de tiempo, expresado en años, que transcurre entre la ocurrencia de un sismo que produce daños de una severidad igual o superior a una determinada. La probabilidad de excedencia, por ejemplo, de 10% en 50 años, es una representación estadística de la posibilidad de que el efecto de un sismo exceda una cierta severidad durante un periodo de tiempo determinado expresado en años. El periodo de retorno TR (intervalo de recurrencia) puede relacionarse directamente con una probabilidad de excedencia *pe* para un numero especifico t de años, mediante la siguiente ecuación:

$$T_R = -\frac{t}{\ln(1-pe)}$$

En la siguiente tabla, se muestran los intervalos de recurrencia y las probabilidades de excedencia para los cuatro movimientos sísmicos de diseño considerados por el Comité Visión 2000.

Tabla 3. Movimientos sísmicos de diseño

	Movimiento	Intervalo de	Probabilidad de	
	Sísmico de diseño	Recurrencia	Excedencia	
	Frecuente	43 años	50% en 30 años	
	Ocasional	72 años	50% en 50 años	
	Raro	475 años	10% en 50 años	
	Muy raro	950 años	10% en 100 años	
Fuente: SEAOC (Com	ité Visión 2000, 1995)			

2.2.4.2. Propuesta del Consejo de Tecnología Aplicado (ATC-40)

El ATC-40 utiliza tres niveles de movimientos sísmicos para el diseño de estructuras: sismo de servicio, sismo de diseño y sismo máximo. A continuación, el detalle.

Las siglas S, D, y M hacen referencia respectivamente a Servicio, Diseño y Máximo, mientras que E, conserva la inicial de la palabra inglesa "Earthquake"

A. Sismo de servicio (SS)

Corresponde a movimientos de baja a moderada intensidad, de ocurrencia frecuente, generalmente asociados con un 50% de probabilidad de ser excedido en un periodo de 50 años, con un periodo medio de retorno de aproximadamente 72 años, de manera que puede llegar a ocurrir varias veces durante la vida útil de una edificación. En base a los resultados de peligrosidad típicos de un emplazamiento determinado, este movimiento representa aproximadamente la mitad del nivel de movimiento asociado a sismo de diseño

tradicionalmente especificado en los códigos, por tratarse de sismos más frecuentes y de menor severidad.

B. Sismo de diseño (SD)

Correspondiente a movimientos de moderada a severa intensidad de ocurrencia poco frecuente, generalmente asociados con un 10% de probabilidad de ser excedido en un periodo de 50 años, con un periodo medio de retorno de aproximadamente 475 años. Se corresponde con el nivel de movimiento tradicionalmente especificado por la mayoría de los códigos de diseño para edificaciones convencionales y se espera que ocurra al menos una vez en la vida útil de una edificación.

C. Sismo máximo (SM)

Correspondiente a movimientos de intensidad entre severos o muy severos, de muy rara ocurrencia, generalmente asociados con un 5% de probabilidad de ser excedido en un periodo de 50 años, con un periodo medio de retorno de aproximadamente 975 años. Se corresponde con el nivel de movimiento tradicionalmente especificado por los códigos de diseño para edificaciones esenciales y representa cerca de 1.25 a 1.5 veces el nivel de movimiento asociado al sismo de diseño tradicionalmente especificado en los códigos, de allí que la mayoría asocian esta relación al factor de importancia de las edificaciones esenciales, por tratarse de sismos menos frecuentes de mayor severidad.

2.2.5. Objetivos de desempeño

El objetivo u objetivos de desempeño seleccionados para un proyecto, son expresiones de acoplamiento entre los niveles de desempeño deseados para una estructura y el nivel de movimiento sísmico esperado. Debe seleccionarse para cada edificación, el desempeño aceptable para diferentes niveles de amenaza sísmica, teniendo en cuenta factores tales como: la ocupación, la importancia de las funciones que ocurren dentro de la estructura, consideraciones económicas, incluyendo el costo de reparación y el costo de la interrupción de las actividades que se realizan en su interior, y consideraciones de la importancia de la estructura como por ejemplo una fuente de patrimonio histórico y cultural.

En general, los objetivos de desempeño que esperan relativamente pequeños niveles de daño para eventos sísmicos relativamente poco frecuentes, resultarán en un mayor trabajo y costo de adecuación, comparados con los objetivos con metas más modestas del control de daño. La siguiente figura muestra esquemáticamente la relación entre distintos objetivos de desempeño y costos relativos asociados.

Figura 1. Relación entre objetivos de desempeño y costos relativos asociados (Fuente: Centro de capacitación e investigación profesional - Perú)

2.2.5.1. Propuesta del Comité Visión 2000

El comité Visión 2000 considera las estructuras en tres grandes grupos, de acuerdo a su grado de importancia durante y después de un sismo:

• Estructuras críticas que contienen cantidades de materiales peligrosos que podrían resultar

en una amenaza inaceptable para un amplio sector de la comunidad.

- Estructuras esenciales que son las encargadas de todas las operaciones post-terremoto, tales como hospitales, estaciones de bomberos, policía, centros de control de emergencia, etc.
- Estructuras básicas que no están incluidas en los dos primeros grupos.

La siguiente tabla muestra la matriz propuesta por el Comité Visión 2000 para definir los objetivos de desempeño. Las filas corresponden a los movimientos sísmicos de diseño, las columnas a los niveles de desempeño y los números corresponden a los tres tipos de estructuras considerados. La siguiente tabla es un ejemplo que ilustra los objetivos para las estructuras básicas.

Para el caso de estructuras existentes, es evidente que estos niveles recomendados de desempeño pueden requerir gastos económicos que desde el punto de vista práctico resultan excesivamente altos.

Movimiento	Nivel de Desempeño de la Estructura						
Sísmico de Diseño	Operacional	Operacional Funcional		Próximo al Colapso			
Frecuente (43 años)	1	0	0	0			
Ocasional (72 años)	2	1	0	0			
Raro (475 años)	3	2	1	0			
Muy raro (970 años)	-	3	2	1			
0. Desempeño inaceptable							
1. Estructura básica							
2. Estructuras esenciales / riesgosas							
3. Estructuras de seguridad critica							
Fuente: SEAOC (Comité Visión 2000, 1995)							

Tabla 4.Objetivos del desempeño sísmico recomendado para estructuras

2.2.5.2. Propuesta del Consejo de Tecnología Aplicado (ATC-40)

Esta propuesta considera que existe una gran variedad de objetivos de desempeño para una estructura, los cuales pueden definirse combinando los niveles de desempeño estructural con los movimientos sísmicos de diseño. Estos objetivos pueden ser asignados a cualquier estructura a partir de consideraciones funcionales, legales, económicas y de preservación. A manera de ilustración, la siguiente tabla muestra los objetivos de seguridad básica para estructuras convencionales. Puede verse que, para el sismo de diseño, el desempeño de las estructuras debe corresponder al nivel de seguridad, mientras que, para el sismo máximo, el nivel de estabilidad estructural es suficiente.

Tabla 5.

Objetivos de seguridad básica para estructuras convencionales

Movimiento	Nivel de Desempeño del Edificio					
Sísmico de Diseño	Operacional Ocupación Inmediata		seguridad	Estabilidad Estructural		
Sismo de Diseño, SE						
Sismo de Servicio, DE			Χ			
Sismo máximo, ME				X		
Fuente: ATC-40, 1996						

2.2.6. Capacidad estructural

La capacidad estructural, es la estabilidad que presenta una edificación ante la acción de fuerzas externas. Dicha capacidad depende de la resistencia y deformación máxima de sus componentes individuales. Para determinar sus capacidades más allá del límite elástico, es necesario realizar algún tipo de análisis no lineal, como por ejemplo el análisis estático no lineal pushover.

2.2.7. Modelo inelástico de las secciones

2.2.7.1. Momento flector - curvatura ($m - \varphi$)

La siguiente figura muestra una rodaja diferencial de un elemento que por efecto del momento flector (M) presenta una curvatura (Φ)

Figura 2. Curvatura de una sección (Fuente: Fernández y Navarro, 2006)

Al aumentar el momento, la curvatura se incrementa y la relación entre ambos es lineal hasta que ocurre el agrietamiento del concreto por tracción. Luego del agrietamiento del concreto existe una relación lineal, pero con otra pendiente hasta llegar al momento y curvatura de fluencia, correspondiente al esfuerzo de fluencia del acero. Después de este punto el momento aumenta lentamente hasta llegar al momento y curvatura última, en donde se produce el agotamiento del concreto o rotura del acero (Ottazzi, 2003)

Figura 3. Diagrama momento - curvatura de una sección (Fuente: Fernández y Navarro, 2006)

A. Secciones A Flexión

Para definir el comportamiento inelástico y la ductilidad de una sección de concreto sometida a flexión se hace necesario analizar la condición de agrietamiento, condición de cedencia y la condición de agotamiento, esto en función de los momentos a los que se encuentra sometida, lo cual se representa en el diagrama momento curvatura M- Φ

B. Secciones A Flexo - Compresión

Para definir el comportamiento y la ductilidad de una sección de concreto sometida a flexo – compresión se hace necesario analizar la condición de cedencia y la condición de agotamiento, esto en función de la carga axial, lo cual se representa en función al diagrama de interacción Carga axial – Momento (P-M) y al diagrama de Carga axial – Curvatura (P- Φ)

Figura 4. Diagrama carga axial – momento (P-M) y carga axial – curvatura (P- Φ) (Fuente: Centro de capacitación e investigación profesional - Perú)

2.2.8. Modelo inelástico de los elementos barra (vigas-columnas)

2.2.8.1. Zonas de comportamiento no lineal

Durante los sismos importantes las vigas y columnas sufren daño en la zona adyacente a los nudos en una longitud determinada "L". El daño no es uniforme sino más concentrado hacia los nudos como se muestra en la siguiente figura.

Figura 5. Idealización del daño en vigas (Fuente: Fernández y Navarro, 2006)

Podemos establecer una zona de daño equivalente en la cual se concentre toda la deformación inelástica, donde el daño y la curvatura se pueden asumir constantes. Esta zona se denomina rótula plástica, y le corresponde una longitud equivalente "Lp" menor a la del daño total "L" como se muestra en la siguiente figura. Una buena aproximación para Lp en vigas y columnas de proporciones típicas es Lp = 0.5h, donde h es el peralte del elemento.

Figura 6. Idealización del daño equivalente (Fuente: Fernández y Navarro, 2006)

2.2.8.2. Relación momento – rotación $(M - \theta)$

El comportamiento de los elementos también es representado por rótulas plásticas del tipo Momento – Rotación que resultan de los diagramas momento-curvatura de cada elemento debido a su simplicidad.

La rotación inelástica en los extremos de los elementos depende de la curvatura a lo largo de la longitud en comportamiento inelástico "L". como hemos asumido que la curvatura es constante a lo largo de la rótula plástica, bastara multiplicar la curvatura (constante) por la longitud equivalente de rótula "Lp" para obtener el valor de la rotación que se genera en la zona inelástica.

Figura 7. Obtención del diagrama momento – rotación (Giro) (Fuente: Fernández y Navarro, 2006)

2.2.8.3. Diagrama simplificado

Para representar la capacidad de rotación inelástica de los elementos se usa el diagrama Momento-Rotación (Giro) simplificado por trazos rectos que se muestra en la siguiente figura:

Figura 8. Idealización del diagrama momento – rotación (Fuente: Fernández y Navarro, 2006)

Para el análisis no lineal es necesario definir la forma y comportamiento de las rótulas plásticas, ya que en función de estas se degradará progresivamente la rigidez de las secciones y de la estructura en general.

El punto B se denomina Fluencia efectiva del elemento, el punto C corresponde a la capacidad máxima resistente de la rótula, se asume que luego de alcanzar la capacidad máxima de momento se produce una reducción súbita del mismo, conformando el punto D; luego el momento se mantiene constante por un tramo muy corto de deformación hasta que sobreviene la rotura en el punto E.

En la presente investigación, para definir estas rótulas, se usaron las tablas del ASCE 41-13, las cuales se presentan a continuación.

Además, el ASCE 41-13 define tres puntos IO (Ocupación Inmediata), LS (Seguridad de Vida) y CP (Prevención del Colapso) que son usados para definir los criterios de aceptación para la articulación. Los valores de deformación que pertenecen a cada uno de estos puntos también se indican en la siguiente tabla.

Figura 9. Idealización del diagrama momento – rotación (Fuente: ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings)

a= Deformación inelástica estable

b= Deformación total hasta el punto de colapso

c= resistencia residual

Tabla 6.

Parámetros de modelado y criterios de aceptación numérica para procedimientos no lineales - vigas de concreto armado

			N	lodeling Paramete	ers"	A	Acceptance Criteria*		
			Plastic Rota	tions Angle ans)	Residual Strength Ratio	Plastic Rotations Angle (radians)			
	Conditions		8	b	c	10	LS	СР	
Condition	i. Beams controlled by fl	exure ^b							
$\frac{\rho - \rho'}{\rho_{\text{bal}}}$	Transverse reinforcement ^c	$\frac{V}{b_w d \sqrt{f_c'}}^d$							
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05	
≤0.0	С	≥6 (0.5)	0.02	0.04	0.2	0.005	0.02	0.04	
≥0.5	С	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≥0.5	С	≥6 (0.5)	0.015	0.02	0.2	0.005	0.015	0.02	
≤0.0	NC	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≤0.0	NC	≥6 (0.5)	0.01	0.015	0.2	0.0015	0.01	0.015	
≥0.5	NC	≤3 (0.25)	0.01	0.015	0.2	0.005	0.01	0.015	
≥0.5	NC	≥6 (0.5)	0.005	0.01	0.2	0.0015	0.005	0.01	
Condition	ii. Beams controlled by s	shear ^b							
Stirrup spa	$cing \le d/2$		0.0030	0.02	0.2	0.0015	0.01	0.02	
Stirrup spa	icing > d/2		0.0030	0.01	0.2	0.0015	0.005	0.01	
Condition	iii. Beams controlled by	inadequate development	t or splicing along the	e soan ^b					
Stirrup spa	$cing \le d/2$		0.0030	0.02	0.0	0.0015	0.01	0.02	
Stirrup spa	cing > d/2		0.0030	0.01	0.0	0.0015	0.005	0.01	
Condition	iv. Beams controlled by	inadequate embedment i	nto beam-column io	int [»]					
		1	0.015	0.03	0.2	0.01	0.02	0.03	

Fuente: ASCE 41-13, Seismic Evaluation and Retrofit of Existing Buildings – Tabla 10.7

Tabla 7.

Parámetros de modelado y criterios de aceptación numérica para procedimientos no lineales - columnas de concreto armado

			N	Modeling Parameters*			Acceptance Criteria*		
			Diretia Dat		Residual	Plastic	Rotations Angle	(radians)	
			Plastic Hot (rad	Plastic Hotations Angle (radians)		Performance Level			
	Conditions		а	b	c	10	LS	СР	
Condition i.b									
P ^c	$a = \frac{A_v}{v}$								
$A_{\rm g}f_{\rm c}'$	$P = \frac{b_w s}{b_w s}$								
≤0.1	≥0.006		0.035	0.060	0.2	0.005	0.045	0.060	
≥0.6	≥0.006		0.010	0.010	0.0	0.003	0.009	0.010	
≤0.1	=0.002		0.027	0.034	0.2	0.005	0.027	0.034	
≥0.6	=0.002		0.005	0.005	0.0	0.002	0.004	0.005	
Condition ii."									
p c	$A_{\rm v}$	V d							
$A_{a}f'_{a}$	$\rho = \frac{1}{b_w s}$	$b_{-}d_{-}\sqrt{f_{-}'}$							
≤0.1	≥0.006	≤3 (0.25)	0.032	0.060	0.2	0.005	0.045	0.060	
≤0.1	>0.006	≥6 (0.5)	0.025	0.060	0.2	0.005	0.045	0.060	
≥0.6	≥0.006	≤3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010	
≥0.6	≥0.006	≥6 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008	
≤0.1	≤0.0005	≤3 (0.25)	0.012	0.012	0.2	0.005	0.010	0.012	
≤0.1	≤0.0005	≥6 (0.5)	0.006	0.006	0.2	0.004	0.005	0.006	
≥0.6	≤0.0005	≤3 (0.25)	0.004	0.004	0.0	0.002	0.003	0.004	
≥0.6	≤0.0005	≥6 (0.5)	0.0	0.0	0.0	0.0	0.0	0.0	
Condition iii. ^b									
₽ °	A_{v}								
$A_{\rm e} f_{\rm c}^{\prime}$	$\rho = \frac{b_w s}{b_w s}$								
≤0.1	≥0.006		0.0	0.060	0.0	0.0	0.045	0.060	
≥0.6	≥0.006		0.0	0.008	0.0	0.0	0.007	0.008	
≤0.1	≤0.0005		0.0	0.006	0.0	0.0	0.005	0.006	
≥0.6	≤0.0005		0.0	0.0	0.0	0.0	0.0	0.0	
Condition iv. C	Columns controlled by in	adequate development or sp	blicing along the cle	ear height ^b					
P ^c	A _v		0 0	0					
$A_{i}f'_{i}$	$\rho = \frac{1}{b_s}$								
≤0.1	≥0.006		0.0	0.060	0.4	0.0	0.045	0.060	
≥0.6	≥0.006		0.0	0.008	0.4	0.0	0.007	0.008	
≤0.1	≤0.0005		0.0	0.006	0.2	0.0	0.005	0.006	
≥0.6	≤0.0005		0.0	0.0	0.0	0.0	0.0	0.0	

Fuente: ASCE 41-13, Seismic Evaluation and Retrofit of Existing Buildings – Tabla 10.8

Finalmente, para representar el comportamiento de vigas y columnas en acciones sísmicas, se ubican rótulas no-lineales en los extremos de estos elementos. Los nudos de unión entre vigas y columnas se consideran como zonas infinitamente rígidas.

Figura 10. Modelado de rótulas y columnas en edificios (Fuente: Fernández y Navarro, 2006)

2.2.9. Incidencia de los muros de albañilería

Los muros de albañilería presentan un comportamiento muy diferente ante las cargas laterales respecto al pórtico de concreto armado. Inicialmente la mampostería es mucho más rígida, sin embrago, su comportamiento es errático y más frágil, ya que su rigidez y resistencia se degradan rápidamente debido al agrietamiento producido por las deformaciones. Al contrario, los pórticos dúctiles son mucho más flexibles y pueden alcanzar grandes deformaciones inelásticas.

Una diferencia importante es que los muros de mampostería alcanzan una deformada típica de corte.

Figura 11. Configuración de un muro de albañilería (Fuente: Giraldo y Ordoñez, 2017)

2.2.9.1. Interacción tabique de albañilería – estructura aporticada

Para representar la interacción Tabique – Pórtico, la Norma Técnica E-070 de albañilería propone adoptar como modelo estructural un sistema compuesto por las barras continuas del pórtico de concreto armado, agregando en aquellos paños donde existan tabiques, un puntal diagonal de albañilería que trabaje a compresión, en reemplazo del tabique. La sección transversal del puntal será bxt.

Figura 12. Puntal diagonal equivalente a la mampostería (Fuente: Centro de capacitación e investigación profesional - Perú)

Donde:

t= Espesor efectivo del tabique

b= Ancho equivalente del puntal de albañilería= ¼ D

D= Longitud del puntal (o longitud Diagonal del tabique)

2.2.9.2. Tipos de falla y resistencias

Los tipos de falla por carga sísmica contenida en el plano del tabique, así como las resistencias (R) respectivas, en condición de rotura del puntal, se presentan a continuación: Nomenclatura:

R= Resistencia última del puntal de albañilería (en kilogramos)

L, h, t = Longitud, altura y espesor del tabique, respectivamente (en centímetros)

$$D = \sqrt{L^2 + h^2}$$

f'm= Resistencia característica a compresión axial de albañilería (en kg/cm^2)

fs= Resistencia última a cizalle de la albañilería = $4 kg/cm^2$

• Aplastamiento (Rc): Esta falla se presenta en las esquinas del tabique, triturándose los ladrillos. La resistencia ultima del puntal se calculará como:

$$R_C = 0.12 x f'm x D x t$$

Tracción diagonal (Rt): Esta falla se manifiesta a través de una grieta diagonal en el tabique.
La resistencia última del puntal se calculará mediante la siguiente expresión:

$$R_t = 0.85\sqrt{f'm} \ x \ D \ x \ t$$

• Cizalle (Rs): Este tipo de falla se produce a la mitad de la altura del tabique (junta de construcción) y se caracteriza por ser una grieta horizontal. La resistencia a la rotura del puntal se obtendrá mediante la siguiente fórmula:

$$A = \frac{f_s \ x \ t \ x \ D}{1 - 0.4 \frac{h}{L}}$$

2.2.10. Análisis estático no lineal pushover

El análisis estático no lineal de carga incremental, mejor conocido como Pushover, es una técnica eficiente para estudiar la capacidad (resistencia – deformación), de una estructura. Esta técnica se basa en la aplicación de un patrón de cargas laterales que se van incrementando en la misma dirección hasta alcanzar el colapso de la edificación o un desplazamiento objetivo, referido típicamente al tope de dicha estructura, la cual se encuentra bajo cargas gravitacionales constantes.

El análisis estático no lineal de carga incremental asume que los múltiples grados de libertad de la estructura están directamente relacionados a la respuesta sísmica de un sistema equivalente de un grado de libertad. El modelo que se genera para realizar el análisis, debe incorporar la no linealidad de los elementos estructurales.

Figura 13. Esquema del proceso del análisis pushover (Fuente: Fernández y Navarro, 2006)

Debido a la constante aplicación de las cargas laterales, la estructura se ira dañando, de manera que existirá un cambio en la rigidez del elemento dañado. Al principio la estructura comienza con una respuesta elástica asociada a la rigidez inicial, con el incremento de las fuerzas los elementos superan su cedencia, produciéndose una reducción de la rigidez y con ello, dicha estructura consigue incursionar en el rango inelástico.

Con los incrementos de las cargas laterales se observa cómo van apareciendo las rótulas en cada uno de los elementos, dejando en evidencia el mecanismo de falla que se producirá (este podrá ser dúctil o frágil), que puede conducir finalmente al colapso de la estructura.

2.2.10.1. Patrón de acciones laterales

En el análisis estático no lineal pushover se somete a la estructura a un patrón de acciones laterales que se incrementa de manera monotónica hasta alcanzar la capacidad máxima de desplazamientos de la estructura. El patrón de acciones laterales puede ser un sistema de cargas o uno de desplazamientos.

A. Sistema de cargas.

Para el patrón de cargas laterales la distribución de cargas puede ser uniforme, triangular, parabólica, etc.

Figura 14. Distribución de cargas laterales (Fuente: Fernández y Navarro, 2006)

Para la presente investigación usaremos una distribución vertical que será proporcional a la distribución de cortantes por piso, calculadas combinando respuestas modales de un análisis de espectro de respuesta del edificio, incluyendo modos suficientes para capturar al menos el 90% de la masa total del edificio.

Figura 15. Distribución vertical proporcional a la distribución de cortantes por piso (Fuente: Centro de capacitación e investigación profesional - Perú)

B. Sistema de desplazamientos

Cuando se trata de un patrón de desplazamientos, estos corresponden a un juego de desplazamientos predeterminados que se van incrementando paulatinamente. Generalmente se usan los desplazamientos provenientes de los modos significativos de vibración.

Figura 16. Distribución vertical proporcional a la forma del modo fundamental (Fuente: Centro de capacitación e investigación profesional - Perú)

2.2.10.2. Carga gravitacional

La carga gravitacional debe considerarse constante y debe trabajar en paralelo con la fuerza lateral. El ASCE 41-13, considera que la carga gravitacional para un análisis no lineal al considerar fuerzas laterales debe de ser el siguiente:

$$Q_G = Q_D + Q_L$$

En donde la carga variable debe ser considerada un 25%.

Por el tipo de infraestructura que se está evaluando, usaremos un 50% para cargas vivas y un 25% para cargas vivas de techo según indica nuestra norma E-030.

2.2.10.3. Desplazamiento de monitoreo

Se define un punto de monitoreo, en el cual se determina el desplazamiento estudiado, en función del incremento monotónico de las cargas laterales, inicialmente se asume un desplazamiento esperado el cual puede ser un 10% de la altura de la edificación.

2.2.11. Curva de capacidad

Como resultado del análisis estático no lineal pushover se obtiene la curva de capacidad de la estructura, que representa el comportamiento de una estructura ante acciones laterales, las cuales son impuestas por los sismos; esta curva relaciona la carga incremental aplicada a la estructura y el desplazamiento que se genera en el nivel superior de la estructura.

En esta curva se puede identificar la secuencia del agrietamiento, cedencia y fallo de la estructura, así como el historial de deformaciones y cortantes en la estructura.

2.2.11.1. Fluencia efectiva de la curva de capacidad

La formación de la primera rótula plástica representa el fin de la fase elástica de la estructura, sin embargo, luego de la primera rótula no se produce un cambio significativo ni inmediato en la rigidez y la resistencia lateral, como se observa en la siguiente figura

Figura 17. Formación de rótulas en la curva de capacidad (Fuente: Amoros, 2015)

Conforme se van formando más rotulas paulatinamente, va cambiando la rigidez lateral del edificio hasta que se hace notorio el cambio y la estructura tiene una rigidez lateral significativamente menor.

Es necesario entonces hallar un punto de fluencia en el cual se haya producido un cambio importante en el comportamiento del edificio y por ende en la pendiente de la curva de capacidad; dicho punto se denomina "Fluencia efectiva"

Entonces, diremos que la fluencia efectiva es el punto en el que se genera un cambio importante de la rigidez de la estructura, y además representa el límite entre el rango elástico de la estructura y la incursión en el rango plástico de las misma. El rango elástico está a la izquierda de punto de fluencia efectiva, y el rango plástico a la derecha.

Figura 18. Punto de fluencia efectiva. (Fuente: Amoros, 2015)

2.2.11.2. Modelo bilineal de la curva de capacidad

Para definir el punto de Fluencia efectiva, que está asociado al cortante basal de fluencia (Vy) y al desplazamiento lateral de fluencia Dt_y , se determina un modelo bilineal para la relación V-Dt. Existen varios criterios para determinar el punto de fluencia, tres de los cuales se indican a continuación:

A. Criterio de las rigideces tangentes

Se trazan dos tangentes a la curva de capacidad, una en el rango elástico y otra desde el punto de cortante máximo. La intersección de estas tangentes define el punto de fluencia efectiva FE (D_{FE}, V_{FE}) (Aguiar, 2003)

Figura 19. Criterio de las rigideces tangentes (Fuente: Amoros, 2015)

B. Criterio de la rigidez tangente horizontal

En este criterio se traza la tangente a la curva de capacidad en el rango elástico, luego se traza una horizontal en el punto de cortante basal. La intersección de estas dos rectas define el punto. Finalmente, al ingresar con el valor a la curva de capacidad se determina el punto. (Aguiar, 2003)

Figura 20. Criterio de la rigidez tangencial horizontal (Fuente: Amoros, 2015)

C. Criterio de las áreas iguales

El punto de fluencia efectiva se determina para lograr que el área exterior e inferior de la curva de capacidad, respecto al modelo bilineal, se consideren aproximadamente iguales (Aguiar, 2003).

Figura 21. Criterio de las áreas iguales (Fuente: Amoros, 2015)

2.2.12. Sectorización de la curva de capacidad para la evaluación de estructuras

Desde el punto de vista estructural, los niveles de desempeño corresponden a sectores definidos de la curva de capacidad de la estructura. Para sectorizar la curva de capacidad debe encontrarse la fluencia efectiva para definir el tramo elástico e inelástico de la estructura. El tramo inelástico de la curva de capacidad se divide en cuatro sectores definidos por fracciones

de Δp a la cuales se le asocia un nivel de desempeño. Este criterio de evaluación, propuesto por el Comité Visión 2000 del SEAOC propone que para cada nivel de desempeño le corresponde un rango de desplazamiento en el techo de la estructura.

Tabla 8.

Rangos de desplazamiento asociado a cada nivel de desempeño

Nivel de desempeño	Rango de desplazamiento				
Operacional	$0 - \Delta FE$				
Funcional	$\Delta FE - (\Delta FE + 0.30\Delta p)$				
Seguridad de vida	$(\Delta FE + 0.30\Delta p) - (\Delta FE + 0.60\Delta p)$				
Cerca del colapso	$(\Delta FE + 0.60\Delta p) - (\Delta FE + 0.80\Delta p)$				
Colapso	$(\Delta FE + 0.80\Delta p) - (\Delta FE + \Delta p)$				
Δ FE: Desplazamiento correspondiente al punto de fluencia efectiva.					
Es el desplazamiento en el rango elástico de la estructura.					
Δp: Rango plástico					

Fuente: SEAOC (Comité Visión 2000, 1995)

Figura 22. Sectorización de la curva de capacidad

2.2.13. Punto de desempeño

Nos referimos al punto de desempeño o demanda de desplazamiento como el máximo desplazamiento probable de la estructura bajo la amenaza sísmica definida. Para determinar la

correspondencia con un determinado nivel de desempeño, debe encontrase un desplazamiento sobre la curva de capacidad de la estructura, consistente con la demanda sísmica.

Figura 23. Punto de Desempeño en la curva de capacidad (Fuente: Fernández y Navarro, 2006)

2.2.14. Métodos para estimar el punto de desempeño

2.2.14.1. Método del espectro de capacidad (ATC-40)

El Método del Espectro de Capacidad fue propuesto por Freeman (1975), constituye un procedimiento simple para determinar el punto de desempeño de una estructura cuando se ve sometido a movimientos sísmicos de diferente intensidad. Mediante un procedimiento gráfico, se compara la capacidad para resistir fuerzas laterales con la demanda sísmica, representada por medio de un espectro de respuesta reducido. La representación gráfica hace posible una evaluación visual de cómo podría comportarse la estructura cuando se somete a un determinado movimiento sísmico.

Para comparar directamente la demanda con la capacidad de la estructura, ambos parámetros se convierten a un grupo de coordenadas espectrales (Sa vs Sd)

A. Conversión de la curva de capacidad en espectro de capacidad

Para usar el Método de Espectro de Capacidad es necesario convertir la curva de capacidad, dado en términos de cortante basal (V) y desplazamiento del techo (Dt), a un espectro de capacidad, que relaciona la aceleración espectral (Sa) respecto del Desplazamiento espectral (Sd).

Figura 24. Curva de capacidad y espectro de capacidad (Fuente: ATC-40, 1996)

Para esta conversión, cada punto (Vi, Dt_i) de la curva de capacidad, le corresponde un punto (Sa_i, Sd_i) del espectro de capacidad.

La conversión de la curva de capacidad al espectro de capacidad se logra a través de la aplicación de dinámica estructural, para obtener pseudo-aceleraciones (Sa) y pseudo-desplazamiento (Sd).

En el análisis modal espectral se definen los modos de vibración Øi, para cada modo de vibración existirá un coeficiente denominado factor de participación modal y además existirá un factor asociado a la masa que participa en cada modo llamado coeficiente de participación de masa modal. Cada autor puede dar un símbolo diferente para estos factores, según el ATC - 40 el factor de participación modal viene designado como PFi y el coeficiente de participación de masa modal por αi.

Para el desarrollo de la curva de capacidad se va a suponer que el modo característico de la estructura será el modo 1 ya que supuestamente representa el modo fundamental de la estructura.

Las ecuaciones para convertir la curva de capacidad en espectro de capacidad son las siguientes:

Aceleración espectral:
$$S_a = \frac{V/W}{\alpha_i}$$

Desplazamiento espectral: $S_d = \frac{D_t}{PF_1 \emptyset_{tope,1}}$

Donde:

$$PF_{i} = \left[\frac{\sum_{i=1}^{N} (w_{i} \emptyset_{i1})/g}{\sum_{i=1}^{N} (w_{i} \emptyset_{i1}^{2})/g}\right]; \text{ Factor de participación sísmica del modo natural 1}$$
$$\alpha_{i} = \frac{\left[\sum_{i=1}^{N} (w_{i} \emptyset_{i1})/g\right]^{2}}{\left[\sum_{i=1}^{N} w_{i}/g\right]\left[\sum_{i=1}^{N} (w_{i} \emptyset_{i1}^{2})/g\right]}; \text{ Coeficiente de masa modal para el modo natural 1}$$

Donde:

Wi/g= Masa asignada al nivel 1

Øi,1= Amplitud del modo 1 en el nivel i

N= nivel N, correspondiente al más alto de la estructura

W= peso de la estructura considerado para el cálculo de la curva de capacidad

Dt= desplazamiento en el tope (techo), obtenido de la curva de capacidad (para cada valor de corte basal V).

B. Conversión del espectro de respuesta a espectro de demanda sísmica

La demanda sísmica inicialmente se representa usando el espectro de respuesta elástico de valores (Sa, T) para un amortiguamiento del 5%; este espectro se define según el sismo de estudio, el cual tendrá un periodo de retorno y una aceleración en función del nivel de amenaza que se quiera estudiar.

El espectro de respuesta debe de ser transformado a un formato ADRS, es decir, de aceleración espectral (Sa) respecto el desplazamiento espectral (Sd), y los periodos se representan con rectas inclinadas. Para convertir un espectro de respuesta estándar de valores (Sa, T) a un formato equivalente (Sa, Sd), se debe determinar cada desplazamiento espectral Sdi para cada Ti con las siguientes ecuaciones:

Figura 25. Espectro de respuesta tradicional y espectro de demanda (ADRS) (Fuente: ATC-40, 1996)

C. Procedimiento usado por el SAP2000 v20.0.0 para determinar el punto de desempeño

El ATC-40 sugiere tres procedimientos de análisis espectral inelástico para estimar el punto de desempeño: Procedimientos A, B y C. el Programa SAP2000 v20.0.0 utiliza una variante del procedimiento B para calcular el punto de desempeño.

- 1. Seleccionar un espectro representativo del movimiento del terreno, con un amortiguamiento inicial (generalmente igual a 5%)
- 2. Convertir dicho espectro a formato ADRS.
- General la curva de capacidad para la estructura a ser analizada y convertirla en formato ADRS.

4. Desarrollar una representación bilineal del espectro de capacidad usando el proceso descrito. El punto asumido de desempeño será definido según la regla de desplazamientos iguales, definiendo como a* y d* el punto donde el desplazamiento del espectro de demanda y del espectro de capacidad son iguales considerando la rigidez elástica

Figura 26. Procedimiento B del espectro de capacidad después del paso 5 (Fuente: ATC-40, 1996)

 Calcular el amortiguamiento efectivo para varios desplazamientos cercanos al punto a* y d*. La pendiente del segmento luego de la cedencia en la representación bilineal viene dada por:

post yield slope =
$$\frac{a^* - a_y}{d^* - d_y}$$

Para cualquier punto de ap_i, dp_i la pendiente del segmento luego de la cedencia en la representación bilineal viene dado por:

$$post yield \ slope = \frac{a_{pi} - a_y}{d_{pi} - d_y}$$

Asumiendo pendientes constantes

$$\frac{a^* - a_y}{d^* - d_y} = \frac{a_{pi} - a_y}{d_{pi} - d_y}$$
$$api = \frac{(a^* - a_y)(d_{pi} - d_y)}{d^* - d_y} + a_y$$

El valor anterior es sustituido en la ecuación de cálculo β_{eff} .

$$\beta_{eff} = 0.637k \frac{(a_y d_{pi} - d_y a_{pi})}{a_{pi} d_{pi}} + 0.05$$

Se resuelve para una serie de valores de dpi asumidos.

- 6. Por cada valor de dpi considerado en el paso anterior, graficar el resultante punto dp_i, β_{eff} en la misma familia de espectros de demanda.
- Conectar en forma de línea los puntos creados en el paso anterior. A esta línea se le denomina EDAV (Espectro de Demanda para Amortiguamiento Variable). La intersección de esta línea con el espectro de capacidad define el punto de desempeño.

Figura 27. Procedimiento B del espectro de capacidad después del paso 8

(Fuente: ATC-40, 1996)

2.3. DEFINICION DE TERMINOS

- **Sismo.** Es una sacudida del terreno que se produce debido al choque de las placas tectónicas y a la liberación de energía en el curso de una reorganización brusca de materiales de la corteza terrestre al superar el estado de equilibrio mecánico.
- Análisis estructural. Es una ciencia que se encarga de la elaboración de métodos de cálculo, para determinar la resistencia, rigidez, estabilidad, durabilidad y seguridad de las estructuras, obteniéndose los valores necesarios para un diseño económico y seguro.
- Análisis lineal. Consiste en la obtención de respuestas estructurales considerando el comportamiento elástico-lineal de los materiales constituyentes y en la consideración del equilibrio en la estructura sin deformar. Se cumple la ley de Hooke
- Análisis no lineal. El análisis no lineal consiste en la obtención de respuestas estructurales considerando la no linealidad geométrica y física.

La no linealidad geométrica se presenta cuando los desplazamientos que se generan en la estructura ya no son de valores despreciables, sino que inducen a solicitaciones (fuerzas, momentos) en la estructura.

La no linealidad física se presenta en el material cuando este sobrepasa un rango especifico de esfuerzo – deformación (desplazamientos), y ya no se cumple con la ley de Hooke.

- **Capacidad estructural.** La capacidad estructural, es la estabilidad que presenta una edificación ante la acción de fuerzas externas. Dicha capacidad depende de la resistencia y deformación máxima de sus componentes individuales.
- **Curva de capacidad.** Representa el comportamiento de una estructura ante acciones laterales, las cuales son impuestas por los sismos; esta curva relaciona la carga incremental

aplicada a la estructura y el desplazamiento que se genera en el nivel superior de la estructura.

En esta curva se puede identificar la secuencia del agrietamiento, cedencia y fallo de la estructura, así como el historial de deformaciones y cortantes en la estructura.

- **Deriva de entrepiso.** Desplazamiento horizontal relativo de entrepisos, calculado como la diferencia de desplazamientos horizontales de dos niveles consecutivos de una edificación divididos por la altura de los entrepisos
- Desempeño estructural. Es una expresión del comportamiento deseado o del desempeño objetivo que debe ser capaz de alcanzar un edificio sujeto a un determinado nivel de movimiento sísmico. Pueden definirse múltiples niveles de desempeño de la edificación para cada uno de los niveles de movimientos especificados. Su selección debe estar basada en las características de ocupación de la edificación, la importancia de la función de sus instalaciones, las consideraciones económicas relacionadas con los costos de reparación de daño y de interrupción de servicios, la importancia de la edificación en el ámbito histórico y cultural (SEAOC 1995).
- Diagrama momento rotación. Es una representación de los valores obtenidos de la relación Momento Curvatura de un elemento, en el que la rotación está representada por la multiplicación del valor de la curvatura por la longitud de la rótula plástica (Lp)
- **Ductilidad.** Es la capacidad de la estructura para deformarse e incursionar en el rango inelástico sin pérdida significativa de la resistencia.
- **Espectro de capacidad.** Es la representación de la curva de capacidad en coordenadas espectrales; se obtiene al transformar la fuerza cortante y el desplazamiento del techo a coordenadas de aceleración espectral Sa y desplazamiento espectral Sd respectivamente.

- Espectro de respuesta. Los espectros de respuesta son representaciones graficas de las máximas aceleraciones de un oscilador de 1 grado de libertad producidas por una aceleración en el terreno, en función del periodo de vibración del oscilador. Este espectro se utiliza para determinar las fuerzas sísmicas en una edificación.
- **Espectro de demanda.** Espectro de respuesta reducido que se utiliza para representar la demanda sísmica mediante el método del espectro de capacidad.
- **Nivel de desempeño.** Los niveles de desempeño describen o representa un estado límite de daño, en función de daños físicos en la estructura, seguridad en los ocupantes y la funcionalidad de la estructura posterior al evento sísmico.
- Punto de desempeño. Es la intersección del espectro de capacidad con el apropiado espectro de demanda en el método del espectro de capacidad. Representa el máximo desplazamiento estructural esperado por el movimiento sísmico demandado
- **Relación momento curvatura.** La relación momento-curvatura nos permite, en forma rápida, visualizar que tan dúctil y resistente es un miembro. De la relación momento-curvatura se obtiene la máxima capacidad a flexión del elemento (Mu), la curvatura última (Φu) , así como también sus respectivos momento y curvatura de fluencia.
- **Rótula plástica.** Es la zona de daño equivalente en la cual se concentra toda la deformación inelástica, y en donde el daño y la curvatura son constantes. A la rótula plástica le corresponde una longitud L*p* correspondiente a una aproximación de 0,4 a 0,5 veces el peralte del elemento.

Punto en el cual la sección no es capaz de absorber mayor momento flector y empieza únicamente a rotar (Aguiar 2003).
• Edificaciones esenciales. Son aquellas edificaciones cuya función no debería interrumpirse inmediatamente después de ocurrido un sismo raro.

2.4. HIPOTESIS

2.4.1. Hipótesis general

El desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco, incumple los objetivos de desempeño propuesto por el Comité Visión 2000.

2.4.2. Hipótesis especificas

- Los puntos de desempeño de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco, exceden los rangos de desplazamiento establecidos por el Comité Visión 2000.
- Los resultados del análisis estático no lineal pushover frente al análisis recomendado por la norma E-030, se asemeja al comportamiento real de la estructura.

2.5. IDENTIFICACIÓN DE LAS VARIABLES

2.5.1. Variables independientes

Desempeño sismorresistente

2.5.2. Variables dependientes

Estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca – Pasco.

VARIABLES	DIMENSIONES	INDICADORES	
VARIABLE INDEPENDIENTE		Operacional	
		Funcional	
	Desempeño	Seguridad de vida	
Desempeño Sismorresistente	Ĩ	Próximo al colapso	
		Colapso	
		Sismo ocasional	
	Demanda Sísmica	Sismo raro	
		Sismo muy raro	
VARIABLE DEPENDIENTE		Estructura de concreto armado	
Estructura del pabellón B de la		Estructuras de acero	
Institución Educativa Ernesto	Sistemas Estructurales	Estructuras de albañilería	
Diez Canseco, Yanahuanca -	Listitucturales	Estructuras de madera	
Pasco		Estructuras de tierra	
	Análisis	Análisis lineal	
	Estructural	Análisis no lineal	

2.5.3. Operacionalización de las variables

CAPITULO III METODOLOGIA

3.1. TIPO DE INVESTIGACIÓN

El tipo de investigación es APLICADA, porque se aplican conocimientos del diseño por desempeño, con el propósito de evaluar el desempeño sismorresistente de la estructura analizada.

3.2. DISEÑO DE INVESTIGACIÓN

Es NO EXPERIMENTAL, TRANSVERSAL, porque la variable independiente carece de manipulación intencional, y la recolección de datos se realiza en un único momento.

3.3. POBLACIÓN MUESTRA

3.3.1. Población

En la presente investigación la población está dada por la delimitación geográfica de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco.

3.3.2. Muestra

La muestra es un subconjunto representativo de la población, se establece para nuestro caso la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco. Se consideró muestras de TIPO NO PROBABILISTICA, INTENCIONAL O DIRIGIDA.

3.4. METODOS DE INVESTIGACIÓN

3.4.1. Método deductivo:

Este método nos permite llegar a las aplicaciones, comprobaciones o consecuencias particulares de un principio, por ello se pretende llevar a la aplicación de un caso específico, estudios previamente establecidos.

3.4.2. Método descriptivo:

Consiste en describir e interpretar sistemáticamente un conjunto de hechos y fenómenos y relacionarlos con otros, tal como se dan en el presente, en su estado actual y en su forma natural, con mínimas posibilidades de control sobre las variables de estudio.

3.5. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

3.5.1. Técnicas de recolección de datos

Las técnicas son diversas en las que se puede mencionar:

- Investigación documental.
- Investigación de campo.

3.5.2. Instrumentos de recolección de datos

- Revisión del Expediente Técnico
- Revisión de bibliografía relacionada al tema
- Revisión de Normas peruanas e internacionales de diseño por desempeño sismorresistente

- Cámara fotográfica
- Ficha Técnica de inspección rápida a la estructura del pabellón B, con la que se pudo replantear las secciones de los elementos descritos en el plano estructural del Expediente Técnico.

3.6. TÉCNICAS DE PROCESAMIENTO Y ANALISIS DE DATOS

En la presente tesis se usa el programa SAP2000 v20.0.0 para la aplicación del análisis estático no lineal pushover y el método del espectro de capacidad. Mediante estos dos procedimientos se hallan los principales resultados.

La estructura se modela y analiza en el programa SAP2000 v20.0.0, en donde se ingresan las propiedades de los materiales, el comportamiento no lineal de las secciones de los elementos estructurales mediante su diagrama Momento - Rotación (calculados previamente con ayuda del software PTC MATHCAD PRIME 4.0) y las demandas sísmicas. Luego se procede a usar el método del espectro de capacidad para hallar los puntos de desempeño que alcanza la estructura ante distintas demandas sísmicas. Finalmente, los resultados obtenidos serán verificados con los objetivos de desempeño propuesto por el Comité Visión 2000 de la SEAOC.

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1. TRATAMIENTO ESTADISTICO E INTERPRETACIÓN DE CUADROS

4.1.1. Tamaño muestral

4.1.1.1. Ubicación

Lugar	: Institución Educativa Ernesto Diez Canseco (Pabellón B)
Distrito	: Yanahuanca
Provincia	: Daniel Alcides Carrión
Departamento	: Pasco

4.1.1.2. Área del proyecto:

• Á	rea total construida	: 700.060 m2
	Área construida del primer piso	: 246.500 m2
	Área construida del segundo piso	: 226.780 m2
	Área construida del tercer piso	: 226.780 m2
• Á	rea Techada	: 299.520 m2

Figura 28. Vista satelital de la Institución Educativa Ernesto Diez Canseco Fuente: Google Earth Pro

Figura 29. Vista frontal y estructuración del pabellón B Fuente: Propia

4.1.2. Descripción de la estructura

La estructura del pabellón B está construida de concreto armado, su estructurado es a base de un sistema aporticado en la dirección X-X y de muros portantes en la dirección Y-Y (muros, columnas y vigas). La estructura está compuesta de 03 niveles, los entrepisos están conformados a base de losas aligeradas horizontales y el techo presenta losas aligeradas inclinadas conformando un techo a dos aguas.

El primer nivel presenta 03 aulas, el segundo y el tercer nivel presentan 03 aulas y un corredor con su respectivo parapeto de seguridad.

• Sistema Estructural

Dirección X-X	: Aporticado
Dirección Y-Y	: Muros portantes
Número de Pisos	: 3
• Altura de entrepiso	
Primer Nivel	: 3.35 m
Segundo Nivel	: 3.20 m
Tercer nivel	: Variable
Altura de la edificación	: 11.75 m.
• Espesor de losa Aligerada horizontal (Unidireccional)	: 0.20 m
• Espesor de losa aligerada inclinada (Unidireccional)	: 0.20 m
• Espesor de muro de albañilería	: 0.25 m

4.1.3. Propiedades de los materiales

• Concreto

•

Resistencia a la compresión	: f´c= 210 kg/cm2
Peso específico	: 2,400 kg/m3
Módulo de Elasticidad	: Ec= 217,370.651 kg/cm2
Coeficiente de poisson	: u=0.20
Acero de Refuerzo	
Resistencia a la fluencia	: fy= 4,200 kg/cm2

	Peso específico	: 7,800 kg/m3
	Módulo de Elasticidad	: E= 2,000,000 kg/cm2
	Coeficiente de poisson	: u=0.30
•	Albañilería	
	Resistencia a la compresión	: f´m= 35 kg/cm2
	Peso específico	: 1,800 kg/m3
	Módulo de elasticidad	: E= 17,500 kg/cm2
	Coeficiente de poisson	: u=0.25

4.1.4. Parámetros sísmicos

Dirección Y-Y

• Suelo

Capacidad Portante	: 1.50 kg/cm2
Zona sísmica	: 3 – Z=0.35
• Perfil de suelo: Suelo intermedio	: S2
• Factor de amplificación de suelo	: S=1.15
• Período que define la plataforma del espectro	: TP= 0.6

• Período que define el inicio de la zona del espectro con desplazamiento constante: TL=2

•	Categoría de la edificación (Edificación esencial)	
	Factor de uso	: U= 1.5
•	coeficiente básico de reducción	
	Dirección X-X	: Rx=8

• Coeficiente para estimar el periodo fundamental de una edificación: CTx= 35, CTy= 60

: Ry=3

4.1.5. Análisis sísmico elástico

Antes de incursionar en el rango inelástico, la estructura debe de ser analizada y evaluada en el rango lineal y elástico con solicitaciones sísmicas reducidas, y de este modo obtener las cortantes en la base y las distorsiones de entrepiso (derivas) que exige la norma E-030.

Como se mencionó anteriormente uno de los instrumentos para el desarrollo de la presente tesis es el software computacional de modelado, análisis y diseño de estructuras SAP2000 v20.0.0

4.1.5.1. Análisis estático

Según la norma E-030, para cada una de las direcciones horizontales, la fuerza cortante en la base se determina por:

$$V = \frac{ZUCS}{R} x P$$
 $\frac{C}{R} \ge 0.11$ $T = \frac{hn}{CT}$

Además:

Si:
$$T < T_P$$
, $C = 2.5$ $T_P < T < T_L$, $C = 2.5 \left(\frac{Tp}{T}\right)$ $T > T_L$, $C = 2.5 \left(\frac{Tp * TL}{T^2}\right)$

Donde:

Z= 0.35	CTx= 35	$T_{P}=0.6$
U= 1.5	CTy= 60	$T_L=2$
S= 1.15	Tx=0.336	Cx= 2.5
Rx= 8	Ty= 0.196	Cy= 2.5
Ry= 3	hn= 11.75 m	

P: Peso total de la edificación= 761578.79 Kg.

TABLE: Auto Seismic - User Coefficient								
LoadPat	Dir	PercentEcc	С	K	WeightUsed	BaseShear		
Text	Text	Unitless	Unitless	Unitless	Kgf	Kgf		
SX_ESTATICO	Х	0.05	0.189	1	761578.79	143938.39		
SY_ESTATICO	Y	0.05	0.503	1	761578.79	383074.13		

Fuente: SAP v20.0.0

4.1.5.2. Análisis dinámico modal espectral

• Aceleración espectral

Según la norma E-030, para cada una de las direcciones horizontales se recurrirá a un espectro inelástico de pseudo - aceleraciones definido por:

$$Sa = \frac{ZUCS}{R} x g$$

Este espectro es expresado en factores Sa vs T

Además:

Si:
$$T < T_P$$
, $C = 2.5$ $T_P < T < T_L$, $C = 2.5 \left(\frac{Tp}{T}\right)$ $T > T_L$, $C = 2.5 \left(\frac{Tp*TL}{T^2}\right)$

Donde:

- Z: 0.35 Rx=8 $T_L=2$ U: 1.5 Ry= 3
- S: 1.15 $T_P = 0.6$

Tabla	<i>10</i> .						
Datos	del es	pectro	de	diseño –	Direc	ción	XX

ESPECTRO D	E DISEÑO X-X	ESPECTRO D	ESPECTRO DE DISEÑO X-X		
T (s)	Sa/g	T (s)	Sa/g		
0	0.18867	0.65	0.17416	ESPECTRO D	e diseño X-X
0.02	0.18867	0.7	0.16172	T (s)	Sa/g
0.04	0.18867	0.75	0.15094	1.6	0.07075
0.06	0.18867	0.8	0.14150	1.65	0.06861
0.08	0.18867	0.85	0.13318	1.7	0.06659
0.1	0.18867	0.9	0.12578	1.75	0.06469
0.12	0.18867	0.95	0.11916	1.8	0.06289
0.14	0.18867	1	0.11320	1.85	0.06119
0.16	0.18867	1.05	0.10781	1.9	0.05958
0.18	0.18867	1.1	0.10291	1.95	0.05805
0.2	0.18867	1.15	0.09844	2	0.05660
0.25	0.18867	1.2	0.09434	3	0.02516
0.3	0.18867	1.25	0.09056	4	0.01415
0.35	0.18867	1.3	0.08708	5	0.00906
0.4	0.18867	1.35	0.08385	6	0.00629
0.45	0.18867	1.4	0.08086	7	0.00462
0.5	0.18867	1.45	0.07807	8	0.00354
0.55	0.18867	1.5	0.07547	9	0.00280
0.6	0.18867	1.55	0.07303	10	0.00226

Figura 30. Espectro de diseño - dirección XX (Fuente: Elaboración propia)

Tabla 11.		
Datos del esp	ectro de diseño –	Dirección YY

SISMO DE I	DISEÑO Y-Y	SISMO DE I	DISEÑO Y-Y		
T (s)	Sa/g	T (s)	Sa/g		
0	0.50313	0.65	0.46442	SISMO DE I	DISEÑO Y-Y
0.02	0.50313	0.7	0.43125	T (s)	Sa/g
0.04	0.50313	0.75	0.40250	1.6	0.18867
0.06	0.50313	0.8	0.37734	1.65	0.18295
0.08	0.50313	0.85	0.35515	1.7	0.17757
0.1	0.50313	0.9	0.33542	1.75	0.17250
0.12	0.50313	0.95	0.31776	1.8	0.16771
0.14	0.50313	1	0.30188	1.85	0.16318
0.16	0.50313	1.05	0.28750	1.9	0.15888
0.18	0.50313	1.1	0.27443	1.95	0.15481
0.2	0.50313	1.15	0.26250	2	0.15094
0.25	0.50313	1.2	0.25156	3	0.06708
0.3	0.50313	1.25	0.24150	4	0.03773
0.35	0.50313	1.3	0.23221	5	0.02415
0.4	0.50313	1.35	0.22361	6	0.01677
0.45	0.50313	1.4	0.21563	7	0.01232
0.5	0.50313	1.45	0.20819	8	0.00943
0.55	0.50313	1.5	0.20125	9	0.00745
0.6	0.50313	1.55	0.19476	10	0.00604

Fuente: Elaboración propia

Figura 31. Espectro de diseño – dirección YY (Fuente: Elaboración propia)

Tabla 12. Fuerza cortante dinámica en la base

TABLE: Base Reactions								
OutputCase CaseType		GlobalFX	Global Y					
Text	Text	Kgf	Kgf					
LinRespSpec	Max	122102.09	91.29					
SY_DISEÑO LinRespSpec		243.39	332974.92					
	se Reactions CaseType Text LinRespSpec LinRespSpec	Ise ReactionsCaseTypeStepTypeTextTextLinRespSpecMaxLinRespSpecMax	See ReactionsCaseTypeStepTypeGlobalFXTextTextKgfLinRespSpecMax122102.09LinRespSpecMax243.39					

Fuente: SAP v20.0.0

4.1.5.3. Comparación de las fuerzas cortantes

Debido a que la fuerza cortante obtenida con el método dinámico no es menor que el 80% de la fuerza cortante obtenida con el método estático para estructuras regulares, se aceptan los cortantes dinámicos.

Tabla 13.

Comparación de las fuerzas cortantes estática y dinámica

Piso	Caso de	Cortante Di	námica (CD)	Cortante Es	stática (CE)	CD/	Obser.
	Carga	Cortante X	Cortante Y	Cortante X	Cortante Y	CE	
		(kg)	(kg)	(kg)	(kg)		
nivel 1	Sismo X	122102.09		143938.39		0.85	cumple
nivel 1	Sismo Y		332974.92		383074.13	0.87	cumple

Fuente: Elaboración propia

4.1.5.4. Revisión de las distorsiones de entrepiso (derivas)

Para estructuras regulares, los desplazamientos laterales se calcularán multiplicando por 0.75R los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducidas.

Tabla 14. Derivas en eje AA, Pórtico 1,3,5,7 – dirección XX

DERIV	DERIVAS EN XX - EJE AA									
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.			
103	3	980	2.3130	0.0013	0.0076	0.007	NO			
88	2	655	1.9017	0.0027	0.0161	0.007	NO			
87	1	335	1.0415	0.0031	0.0187	0.007	NO			
0	0	0	0.0000	0.0000	0.0000					

Tabla 15.

Derivas en eje BB, Pórtico 1,3,5,7 – dirección XX

	DERIVAS EN XX - EJE BB										
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.				
118	3	1052.530	2.3042	0.0000	0.0000	0.007	SI				
4	3	980	2.3042	0.0013	0.0076	0.007	NO				
3	2	655	1.8946	0.0027	0.0161	0.007	NO				
2	1	335	1.0376	0.0031	0.0186	0.007	NO				
1	0	0	0.0000	0.0000	0.0000						

Fuente: Elaboración propia

Tabla 16.

Derivas en eje DD, Pórtico 1,3,5,7 – dirección XX

DERIV	DERIVAS EN XX - EJE DD								
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.		
119	3	1052.340	2.2914	0.0000	0.0000	0.007	SI		
9	3	980	2.2914	0.0013	0.0075	0.007	NO		
8	2	655	1.8836	0.0027	0.0160	0.007	NO		
7	1	335	1.0308	0.0031	0.0185	0.007	NO		
6	0	0	0.0000	0.0000	0.0000				

Tabla 17. Derivas en eje AA, Pórtico 2,4,6 – dirección XX

DERIV	DERIVAS EN XX - EJE AA									
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.			
110	3	980	2.3130	0.0013	0.0076	0.007	NO			
90	2	655	1.9017	0.0027	0.0161	0.007	NO			
89	1	335	1.0415	0.0031	0.0187	0.007	NO			
0	0	0	0.0000	0.0000	0.0000					

Tabla 18.

Derivas en eje BB, Pórtico 2,4,6 – dirección XX

DERIV	DERIVAS EN XX - EJE BB									
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas $(\Delta \text{ inelas.})$	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.			
120	3	1052.530	2.3042	0.0000	0.0000	0.007	SI			
14	3	980	2.3042	0.0013	0.0076	0.007	NO			
13	2	655	1.8946	0.0027	0.0161	0.007	NO			
12	1	335	1.0376	0.0031	0.0186	0.007	NO			
11	0	0	0.0000	0.0000	0.0000					

Fuente: Elaboración propia

Tabla 19.

Derivas en eje DD, Pórtico 2,4,6 – dirección XX

DERIV	DERIVAS EN XX - EJE DD									
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.			
121	3	1052.340	2.2914	0.0000	0.0000	0.007	SI			
19	3	980	2.2914	0.0013	0.0075	0.007	NO			
18	2	655	1.8836	0.0027	0.0160	0.007	NO			
17	1	335	1.0308	0.0031	0.0185	0.007	NO			
16	0	0	0.0000	0.0000	0.0000					

Tabla 20. Derivas en eje AA, Pórtico 1,3,5,7 – dirección YY

DERIV	DERIVAS EN YY - EJE AA									
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas $(\Delta \text{ inelas.})$	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.			
103	3	980	0.9992	0.00074	0.0017	0.005	SI			
88	2	655	0.7571	0.00118	0.0027	0.005	SI			
87	1	335	0.3788	0.00113	0.0025	0.005	SI			
0	0	0	0.0000	0.00000	0.0000					

Tabla 21.

Derivas en eje BB, Pórtico 1,3,5,7 – dirección YY

DERIV	DERIVAS EN XX - EJE BB									
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.			
118	3	1052.53	0.9992	0.0000	0.0000	0.005	SI			
4	3	980	0.9992	0.0007	0.0017	0.005	SI			
3	2	655	0.7571	0.0012	0.0027	0.005	SI			
2	1	335	0.3788	0.0011	0.0025	0.005	SI			
1	0	0	0.0000	0.0000	0.0000					

Fuente: Elaboración propia

Tabla 22.

Derivas en eje DD, Pórtico 1,3,5,7 – dirección YY

DERIV	DERIVAS EN XX - EJE DD						
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.
119	3	1052.340	0.9992	0.0000	0.0000	0.005	SI
9	3	980	0.9992	0.0007	0.0017	0.005	SI
8	2	655	0.7571	0.0012	0.0027	0.005	SI
7	1	335	0.3788	0.0011	0.0025	0.005	SI
6	0	0	0.0000	0.0000	0.0000		

Tabla 23. Derivas en eje AA, Pórtico 2,4,6 – dirección YY

DERIV	DERIVAS EN YY - EJE AA						
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas $(\Delta \text{ inelas.})$	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.
110	3	980	0.9500	0.0007	0.0016	0.005	SI
90	2	655	0.7198	0.0011	0.0025	0.005	SI
89	1	335	0.3597	0.0011	0.0024	0.005	SI
0	0	0	0.0000	0.0000	0.0000		

Tabla 24.

Derivas en eje BB, Pórtico 2,4,6 – dirección YY

DERIV	DERIVAS EN XX - EJE BB						
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas $(\Delta \text{ inelas.})$	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.
120	3	1052.530	0.9500	0.0000	0.0000	0.005	SI
14	3	980	0.9500	0.0007	0.0016	0.005	SI
13	2	655	0.7198	0.0011	0.0025	0.005	SI
12	1	335	0.3597	0.0011	0.0024	0.005	SI
11	0	0	0.0000	0.0000	0.0000		

Fuente: Elaboración propia

Tabla 25.

Derivas en eje DD, Pórtico 2,4,6 – dirección YY

DERIV	DERIVAS EN XX - EJE DD						
Nodo	Piso	Altura (cm)	Desp. (cm)	Derivas (Δ inelas.)	Derivas (Δ elas.) 0.75*R	Deriva limite	Obs.
121	3	1052.340	0.9500	0.0000	0.0000	0.005	SI
19	3	980	0.9500	0.0007	0.0016	0.005	SI
18	2	655	0.7198	0.0011	0.0025	0.005	SI
17	1	335	0.3597	0.0011	0.0024	0.005	SI
16	0	0	0.0000	0.0000	0.0000		

4.1.6. Evaluación del desempeño de la estructura

Luego de haber obtenido la fuerza cortante que actuara en la base, y haber revisado las distorsiones de entrepiso (derivas), se procede a evaluar el desempeño de la estructura.

Para obtener la curva de capacidad por la técnica pushover, es necesario conocer el comportamiento inelástico de las secciones de los elementos estructurales (Columnas y vigas).

4.1.6.1. Modelo inelástico – columnas (Rótula plástica)

Las columnas trabajan a flexo - compresión, el comportamiento inelástico que se representa por el diagrama momento – rotación, depende de la carga axial actuante

A. COLUMNA: C1-30x60:

Figura 32. Diagrama de interacción P-M2, C1-30x60, eje local XX (condición de cedencia) (Fuente: elaboración propia)

Tabla 26.

Datos de momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_1P, eje local 3-3, 1er nivel.

	P=130 ton				
Pto	Momento (Kg-m)	M/My	Rotación (rad)		
А	0	0	0		
В	40,564.000	1.000	0.002		
С	44,447.819	1.096	0.011		
D	0	0	0.011		
Е	0	0	0.011		

	P=85 ton				
Pto	Momento (Kg-m)	M/My	Rotación (rad)		
А	0	0	0		
В	35,055.000	1.000	0.002		
С	47,913.158	1.367	0.033		
D	7,011.000	0.2	0.033		
Е	7,011.000	0.2	0.062		

	P=35 ton				
Pto	Momento (Kg-m)	M/My	Rotación (rad)		
А	0	0	0		
В	26,207.000	1.000	0.001		
С	39,353.577	1.502	0.033		
D	5,241.400	0.2	0.033		
Е	5,241.400	0.2	0.061		

	P=0 ton				
Pto	Momento (Kg-m)	M/My	Rotación (rad)		
А	0	0	0		
В	18,613.98	1.000	0.001		
С	31,760.556	1.706	0.033		
D	3,722.796	0.2	0.033		
Е	3,722.796	0.2	0.061		

Criterios de aceptación			
P=130 ton			
IO (rad)	LS (rad)	CP (rad)	
0.003	0.008	0.009	

Criterios de aceptación			
P=35 ton			
IO (rad)	LS (rad)	CP (rad)	
0.005	0.045	0.060	

Criterios de aceptación			
P=85 ton			
IO (rad)	LS (rad)	CP (rad)	
0.005	0.045	0.060	

Criterios de aceptación			
P=0 ton			
IO (rad)	LS (rad)	CP (rad)	
0.003	0.008	0.009	

Figura 34. Diagrama momento - rotación y criterios de aceptación: C1-30x60_P-M2-M3_1P, eje local 3-3, 1er

nivel.

Tabla 27.

Datos de momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_2P, eje local 3-3, 2do nivel.

C1 – P=130 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	40,564.000	1.000	0.002
С	44,398.745	1.096	0.011
D	0	0	0.011
Е	0	0	0.011

	C1 – P=85 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)	
А	0	0	0	
В	35,055.000	1.000	0.002	
С	47,764.834	1.363	0.033	
D	7,011.000	0.2	0.033	
Е	7,011.000	0.2	0.062	

C1 – P=35 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	26,207.000	1.000	0.001
С	39,353.577	1.502	0.033
D	5,241.400	0.200	0.033
E	5,241.400	0.200	0.061

Criterios de aceptación			
P=130 ton			
IO (rad) LS (rad) CP (rad)			
0.003	0.008	0.009	

Criterios de aceptación			
P=35 ton			
IO (rad) LS (rad) CP (rad)			
0.005	0.045	0.060	

C1 - P=0 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	18,613.98	1.000	0.001
С	31,760.556	1.706	0.033
D	3,722.796	0.200	0.033
Е	3,722.796	0.200	0.061

Criterios de aceptación				
P=85 ton				
IO (rad) LS (rad) CP (rad)				
0.005	0.045	0.060		

Criterios de aceptación				
P=0 ton				
IO (rad) LS (rad) CP (rad)				
0.005 0.045 0.060				

Figura 35. Diagrama momento - rotación y criterios de aceptación: C1-30x60_P-M2-M3_2P, eje local 3-3, 2do

nivel.

Tabla 28.

Datos de momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_3P, eje local 3-3, 3er nivel.

C1 – P=130 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	40,564.000	1.000	0.002
С	44,415.635	1.095	0.011
D	0	0	0.011
Е	0	0	0.011

	C1 – P=85 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)	
А	0	0	0	
В	35,055.000	1.000	0.002	
С	47,815.788	1.364	0.033	
D	7,011.000	0.200	0.033	
Е	7,011.000	0.200	0.062	

C1 – P=35 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	26,207.000	1.000	0.001
С	39,353.577	1.502	0.033
D	5,241.400	0.200	0.033
E	5,241.400	0.200	0.061

Criterios de aceptación			
130 ton			
IO (rad) LS (rad) CP (rad)			
0.003	0.008	0.009	

Criterios de aceptación		
35 ton		
IO (rad) LS (rad) CP (rad)		
0.005	0.045	0.060

C1 - P=0 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	18,613.98	1.000	0.001
С	31,760.556	1.706	0.033
D	3,722.796	0.200	0.033
Е	3,722.796	0.200	0.061

Criterios de aceptación		
85 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.045	0.060

Criterios de aceptación		
0 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.045	0.060

Figura 36. Diagrama momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_3P, eje local 3-3, 3er

nivel.

Tabla 29.

Datos de momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_1P, eje local 2-2, ler nivel.

C1 – P=130 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	18,775.000	1.000	0.004
С	19185.831	1.022	0.008
D	0	0	0.008
Е	0	0	0.008

	C1 – P=85 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)	
А	0	0	0	
В	15,997.000	1.000	0.003	
С	17,229.492	1.077	0.015	
D	3,199.400	0.200	0.015	
Е	3,199.400	0.200	0.015	

C1 – P=35 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	11,975.000	1.000	0.002
С	13,207.492	1.103	0.014
D	2,395.000	0.200	0.014
E	2,395.000	0.200	0.014

Criterios de aceptación		
130 ton		
IO (rad)	LS (rad)	CP (rad)
0.002	0.003	0.004

Criterios de aceptación		
35 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.010	0.012

C1 - P=0 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	8,564.883	1.000	0.002
С	9,797.375	1.144	0.014
D	1,712.977	0.200	0.014
Е	1,712.977	0.200	0.014

Criterios de aceptación		
85 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.010	0.012

Criterios de aceptación			
0 ton			
IO (rad) LS (rad) CP (rad)			
0.005	0.010	0.012	

Figura 37. Diagrama momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_1P, eje local 2-2, 1er

nivel.

Tabla 30.

Datos momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_2P, eje local 2-2, 2do nivel.

C1 – P=130 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	18775	1.000	0.003
С	19185.831	1.022	0.007
D	0	0	0.007
Е	0	0	0.007

C1 – P=85 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	15997.000	1.000	0.003
С	17229.492	1.077	0.015
D	3199.400	0.2	0.015
Е	3199.400	0.2	0.015

C1 – P=35 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	11975.000	1.000	0.002
С	13207.492	1.103	0.014
D	2395.000	0.2	0.014
Е	2395.000	0.2	0.014

Criterios de aceptación			
130 ton			
IO (rad) LS (rad) CP (rad)			
0.002	0.003	0.004	

Criterios de aceptación			
35 ton			
IO (rad) LS (rad) CP (rad)			
0.005 0.01 0.012			

C1 - P=0 ton				
Pto	Momento (Kg-m)	M/My	Rotación (rad)	
А	0	0	0	
В	8564.883	1.000	0.002	
С	9797.375	1.144	0.014	
D	1712.977	0.2	0.014	
Е	1712.977	0.2	0.014	

Criterios de aceptación			
85 ton			
IO (rad) LS (rad) CP (rad)			
0.005 0.01 0.012			

Criterios de aceptación		
0 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.01	0.012

Figura 38. Diagrama momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_2P, eje local 2-2, 2do nivel.

Tabla 31.

Datos de momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_3P, eje local 2-2, 3er nivel.

F

C1 – P=130 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	18775.000	1.000	0.003
С	19185.831	1.022	0.007
D	0	0	0.007
Е	0	0	0.007

C1 – P=85 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	15997.000	1.000	0.003
С	17229.492	1.077	0.015
D	3199.400	0.200	0.015
Е	3199.400	0.200	0.015

C1 – P=35 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	11975.000	1.000	0.002
С	13207.492	1.103	0.014
D	2395.000	0.200	0.014
E	2395.000	0.200	0.014

Criterios de aceptación			
130 ton			
IO (rad) LS (rad) CP (rad)			
0.002	0.003	0.004	

Criterios de aceptación		
35 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.010	0.012

C1 - P=0 ton			
Pto	Momento (Kg-m)	M/My	Rotación (rad)
А	0	0	0
В	8564.883	1.000	0.002
С	9797.375	1.144	0.014
D	1712.977	0.200	0.014
Е	1712.977	0.200	0.014

Criterios de aceptación			
85 ton			
IO (rad) LS (rad) CP (rad)			
0.005	0.010	0.012	

Criterios de aceptación		
0 ton		
IO (rad)	LS (rad)	CP (rad)
0.005	0.010	0.012

Figura 39. Diagrama momento-rotación y criterios de aceptación: C1-30x60_P-M2-M3_3P, eje local 2-2, 3er nivel.

Los datos para representar el diagrama momento – rotación de las demás columnas se encuentran en los anexos.

4.1.6.2. Modelo inelástico – vigas (Rótula plástica)

Las vigas son elementos que trabajan a flexión, el comportamiento inelástico se representa por el diagrama momento - rotación

Tabla 32.		
Datos de momento-rotación y criterios de aceptación.	: V-30x65_(P1,3,5,7_BA_1,2)	

VIGA-30X65_(P1,3,5,7_BA_1,2)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 5,105.052	- 0.047
- D	- 5,105.052	- 0.025
- C	- 30,890.026	- 0.025
- B	- 25,525.261	- 0.001
А	0	0
В	13,931.35	0
С	19,527.795	0.025
D	2,786.27	0.025
E	2,786.27	0.05

Criterios de aceptación			
IO (rad) LS (rad) CP (rad)			
0.010	0.025	0.05	
- 0.009	- 0.024	- 0.046	

Figura 40. Diagrama momento-rotación y criterios de aceptación: V-30x65_(P1,3,5,7_BA_1,2)

Tabla 33.

Datos de momento-rotación y criterios de aceptación, V-30x45_(P1,3,5,7_BC_1,2)

VIGA-30X45_(P1,3,5,7_BC_1,2)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 2,978.686	- 0.046
- D	- 2,978.686	- 0.025
- C	- 16,635.109	- 0.025
- B	- 14,893.431	- 0.002
А	0	0
В	9,094.613	0.001
С	10,951.604	0.026
D	1,818.923	0.026
E	1,818.923	0.051

Criterios de aceptación		
IO (rad) LS (rad) CP (rad)		
0.010	0.025	0.05
- 0.008	- 0.023	- 0.044

Figura 41. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_BC_1,2)

VIGA-30X45_(P1,3,5,7_CB_1,2)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 1,820.77	- 0.051
- D	- 1,820.77	- 0.026
- C	- 10,960.842	- 0.026
- B	- 9,103.851	- 0.001
Α	0	0
В	9,103.851	0.001
С	10,960.842	0.026
D	1,820.77	0.026
E	1,820.77	0.051

Datos de momento-rotación y criterios de aceptación, V-30x45_(P1,3,5,7_CB_1,2)

Criterios de aceptación		
IO (rad) LS (rad) CP (rad)		
0.010	0.025	0.05
- 0.010	- 0.025	- 0.05

Momento - Rotación (M- θ) 12000 Momento (kg.m) 6000 0 -0,05 0,005 0,045 -6000 -12000 Rotación (rad) Diagrama -10 LS СР _

Figura 42. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_CB_1,2)

Tabla 35.

Tabla 34.

Datos de momento-rotación y criterios de aceptación, V-30x45_(P1,3,5,7_CD_1,2)

VIGA-30X45_(P1,3,5,7_CD_1,2)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 1,820.77	- 0.051
- D	- 1,820.77	- 0.026
- C	- 10,960.842	- 0.026
- B	- 9,103.851	- 0.001
А	0	0
В	9,103.851	0.001
С	10,960.842	0.026
D	1,820.77	0.026
E	1,820.77	0.051

Criterios de aceptación			
IO (rad)	LS (rad)	CP (rad)	
0.010	0.025	0.05	
- 0.010	- 0.025	- 0.05	

Figura 43. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_CD_1,2)

VIGA-30X45_(P1,3,5,7_DC_1,2)_M3		
Pto	Momento (Kg-m) Rotación (ra	
- E	- 1,820.77	- 0.051
- D	- 1,820.77	- 0.026
- C	- 10,960.842	- 0.026
- B	- 9,103.851	- 0.001
А	0	0
В	9,103.851	0.001
С	10,960.842	0.026
D	1,820.77	0.026
E	1,820.77	0.051

Tabla 36. Datos de momento-rotación y criterios de aceptación, V-30x45_(P1,3,5,7_DC_1,2)

Criterios de aceptación			
IO (rad)	LS (rad)	CP (rad)	
0.010	0.025	0.05	
- 0.010	- 0.025	- 0.05	

Figura 44. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_DC_1,2)

Tabla 37.

Datos de momento-rotación y criterios de aceptación, V-30x45_(P1,3,5,7_BA_3)

VIGA-30X45_(P1,3,5,7_BA_3)_M3			
Pto	Momento (Kg-m)	Rotación (rad)	
- E	- 2,978.686	- 0.045	
- D	- 2,978.686	- 0.025	
- C	- 16,635.109	- 0.025	
- B	- 14,893.431	- 0.001	
А	0	0	
В	9,094.613	0.001	
С	10,951.604	0.026	
D	1,818.923	0.026	
E	1,818.923	0.051	

Criterios de aceptación			
IO (rad)	LS (rad)	CP (rad)	
0.010	0.025	0.05	
- 0.008	- 0.023	- 0.044	

Figura 45. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_BA_3)

VIGA-30X45_(P1,3,5,7_BC_3)_M3		
Pto	Momento (Kg-m) Rotación (ra	
- E	- 2,978.686	- 0.045
- D	- 2,978.686	- 0.025
- C	- 16,635.109	- 0.025
- B	- 14,893.431	- 0.001
Α	0	0
В	9,094.613	0.001
С	10,951.604	0.026
D	1,818.923	0.026
E	1,818.923	0.051

*Tabla 38. Datos de momento-rotación y criterios de aceptación, V-30*45_(P1,3,5,7_BC_3)*

Criterios de aceptación			
IO (rad)	LS (rad)	CP (rad)	
0.010	0.025	0.05	
- 0.008	- 0.023	- 0.044	

Momento - Rotación (М- 0)

Figura 46. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_BC_3)

Tabla 39.

Datos de momento-rotación y criterios de aceptación, V-30*45_(P1,3,5,7_CB_3)

VIGA-30X45_(P1,3,5,7_CB_3)_M3			
Pto	Momento (Kg-m)	Rotación (rad)	
- E	- 4,753.809	- 0.033	
- D	- 4,753.809	- 0.023	
- C	- 25,258.70	- 0.023	
- B	- 23,769.044	- 0.003	
А	0	0	
В	8,979.457	0.001	
С	10,836.447	0.026	
D	1,795.891	0.026	
E	1,795.891	0.051	

Criterios de aceptación			
IO (rad)	LS (rad)	CP (rad)	
0.010	0.025	0.05	
- 0.005	- 0.02	- 0.03	

Figura 47. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_CB_3)

VIGA-30X45_(P1,3,5,7_CD_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 4,753.809	- 0.033
- D	- 4,753.809	- 0.023
- C	- 25,258.70	- 0.023
- B	- 23,769.044	- 0.003
Α	0	0
В	8,979.457	0.001
С	10,836.447	0.026
D	1,795.891	0.026
E	1,795.891	0.051

Tabla 40.				
Datos de momento-rotación y criterios de aceptación,	V-30*45_	(P1,3,5,7_	CD	3)

Criterios de aceptación			
IO (rad)	LS (rad)	CP (rad)	
0.010	0.025	0.05	
- 0.005	- 0.02	- 0.03	

Momento - Rotación (M-0)

Figura 48. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_CD_3)

Tabla 41.

Datos de momento-rotación y criterios de aceptación, V-30*45_(P1,3,5,7_DC_3)

VIGA-30X45_(P1,3,5,7_DC_3)_M3			
Pto	Momento (Kg-m)	Rotación (rad)	
- E	- 1,820.77	- 1820.77	
- D	- 1,820.77	- 1820.77	
- C	- 10,960.842	- 10960.842	
- B	- 9,103.851	- 9103.851	
А	0	0	
В	9,103.851	9103.851	
С	10,960.842	10960.842	
D	1,820.77	1820.77	
E	1,820.77	1820.77	

Criterios de aceptación				
IO (rad)	LS (rad)	CP (rad)		
0.010	0.025	0.05		
- 0.010	- 0.025	- 0.05		

Figura 49. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_DC_3)
VIGA-30X45_(P1,3,5,7_DE_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 1,820.77	- 1820.77
- D	- 1,820.77	- 1820.77
- C	- 10,960.842	- 10960.842
- B	- 9,103.851	- 9103.851
Α	0	0
В	9,103.851	9103.851
С	10,960.842	10960.842
D	1,820.77	1820.77
E	1,820.77	1820.77

*Tabla 42. Datos de momento-rotación y criterios de aceptación, V-30*45_(P1,3,5,7_DE_3)*

Momento (kg.m)

-0,055

-0,035

Criterios de aceptación				
IO (rad) LS (rad) CP (rad)				
0.010	0.025	0.05		
- 0.010	- 0.025	- 0.05		

Figura 50. Diagrama momento-rotación y criterios de aceptación: V-30x45_(P1,3,5,7_DE_3)

Rotación (rad)

Momento - Rotación (M-0)

12000

6000

0

þ,005

0,025

LS -

0,045

- CP

-0,015

-6000

-12000

- Diagrama 🛛 —— IO 🚽

Tabla 43

Datos de momento-rotación y criterios de aceptación, V-30*65_(P2,4,6_BA_1,2)

$VIGA_{-30}X65$ (P2 4 6 BA 1 2) M3				
V I	VIOA-30A03_(F2,4,0_DA_1,2)_WI3			
Pto	Momento (Kg-m)	Rotación (rad)		
- E	- 7,884.835	- 0.037		
- D	- 7,884.835	- 0.020		
- C	- 43,683.553	- 0.020		
- B	- 39,424.176	- 0.001		
А	0	0		
В	32,905.146	0.001		
С	38,063.875	0.024		
D	6,581.029	0.024		
E	6,581.029	0.047		

Criterios de aceptación				
IO (rad) LS (rad) CP (rad)				
0.008	0.023	0.046		
- 0.005	- 0.019	- 0.036		

Figura 51. Diagrama momento-rotación y criterios de aceptación: V-30x65_(P2,4,6_BA_1,2)

VIGA-30X65_(P2,4,6_BD_1,2)_M3			
Pto	Momento (Kg-m)	Rotación (rad)	
- E	- 7,811.221	- 0.043	
- D	- 7,811.221	- 0.026	
- C	- 44,087.25	- 0.026	
- B	- 39,056.104	- 0.003	
Α	0	0	
В	17,939.508	0.002	
С	23,535.953	0.027	
D	3,587.902	0.027	
E	3,587.902	0.052	

Tabla 44.				
Datos de momento-rotación y criterios de aceptación,	V-30*65	(P2,4,6	BD	1.2)

Criterios de aceptación				
IO (rad) LS (rad) CP (rad)				
0.010	0.025	0.050		
- 0.007	- 0.022	- 0.040		

Figura 52. Diagrama momento-rotación y criterios de aceptación: V-30x65_(P2,4,6_BD_1,2)

Tabla 45.

Datos de momento-rotación y criterios de aceptación, V-30*65_(P2,4,6_DB_1,2)

VIGA-30X65_(P2,4,6_DB_1,2)_M3				
Pto	Momento (Kg-m)	Rotación (rad)		
- E	- 7,811.221	- 0.043		
- D	- 7,811.221	- 0.026		
- C	- 44,087.25	- 0.026		
- B	- 39,056.104	- 0.003		
А	0	0		
В	17,939.508	0.002		
С	23,535.953	0.027		
D	3,587.902	0.027		
E	3,587.902	0.052		

Criterios de aceptación				
IO (rad) LS (rad) CP (rad)				
0.010	0.025	0.050		
- 0.007	- 0.022	- 0.040		

Figura 53. Diagrama momento-rotación y criterios de aceptación: V-30x65_(P2,4,6_DB_1,2)

VIGA-30X50_(P2,4,6_BA_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 3,377.524	- 0.045
- D	- 3,377.524	- 0.025
- C	- 19,294.329	- 0.025
- B	- 16,887.62	- 0.001
А	0	0
В	10,300.867	0.001
С	12,848.18	0.026
D	2,060.173	0.026
E	2,060.173	0.051

*Tabla 46. Datos de momento-rotación y criterios de aceptación, V-30*50_(P2,4,6_BA_3)*

Criterios de aceptación			
IO (rad) LS (rad) CP (rad)			
0.010	0.025	0.050	
- 0.009	- 0.024	- 0.044	

10000 0,006 0,026 0,046 -0,014 0,006 0,026 0,046 -10000 Rotación (rad) -Diagrama -10 LS -CP

Momento - Rotación (M- θ)

Figura 54. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_BA_3)

Tabla 47.

Datos de momento-rotación y criterios de aceptación, V-30*50_(P2,4,6_BC_3)

VIGA-30X50_(P2,4,6_BC_3)_M3			
Pto	Momento (Kg-m)	Rotación (rad)	
- E	- 3,377.524	- 0.045	
- D	- 3,377.524	- 0.025	
- C	- 19,294.329	- 0.025	
- B	- 16,887.62	- 0.001	
А	0	0	
В	10,300.867	0.001	
С	12,848.18	0.026	
D	2,060.173	0.026	
E	2,060.173	0.051	

Criterios de aceptación		
IO (rad)	LS (rad)	CP (rad)
0.010	0.025	0.050
- 0.009	- 0.024	- 0.044

Figura 55. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_BC_3)

VIGA-30X50_(P2,4,6_CB_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 5,475.892	- 0.035
- D	- 5,475.892	- 0.023
- C	- 29,481.926	- 0.023
- B	- 27,379.458	- 0.003
Α	0	0
В	10,171.02	0.001
С	12,718.332	0.026
D	2,034.204	0.026
E	2,034.204	0.051

Criterios de aceptación		
IO (rad)	LS (rad)	CP (rad)
0.010	0.025	0.050
- 0.006	- 0.021	- 0.033

Tabla 48.Datos de momento-rotación y criterios de aceptación, V-30*50_(P2,4,6_CB_3)

Figura 56. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_CB_3)

Tabla 49.

Datos de momento-rotación y criterios de aceptación, V-30*50_(P2,4,6_CD_3)

VIGA-30X50_(P2,4,6_CD_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 5,475.892	- 0.035
- D	- 5,475.892	- 0.023
- C	- 29,481.926	- 0.023
- B	- 27,379.458	- 0.003
А	0	0
В	10,171.02	0.001
С	12,718.332	0.026
D	2,034.204	0.026
Е	2,034.204	0.051

Criterios de aceptación		
IO (rad)	LS (rad)	CP (rad)
0.010	0.025	0.050
- 0.006	- 0.021	- 0.033

Figura 57. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_CD_3)

VIGA-30X50_(P2,4,6_DC_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 2,060.776	- 0.051
- D	- 2,060.776	- 0.026
- C	- 12,851.191	- 0.026
- B	- 10,303.879	- 0.001
Α	0	0
В	10,303.879	0.001
С	12,851.191	0.026
D	2,060.776	0.026
E	2,060.776	0.051

*Tabla 50. Datos de momento-rotación y criterios de aceptación, V-30*50_(P2,4,6_DC_3)*

Criterios de aceptación		
IO (rad)	LS (rad)	CP (rad)
0.010	0.025	0.050
- 0.010	- 0.025	- 0.050

Figura 58. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_DC_3)

Tabla 51.

Datos de momento-rotación y criterios de aceptación, V-30*50_(P2,4,6_De_3)

VIGA-30X50_(P2,4,6_DE_3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 2,060.776	- 0.051
- D	- 2,060.776	- 0.026
- C	- 12,851.191	- 0.026
- B	- 10,303.879	- 0.001
Α	0	0
В	10,303.879	0.001
С	12,851.191	0.026
D	2,060.776	0.026
E	2,060.776	0.051

Criterios de aceptación		
IO (rad)	LS (rad)	CP (rad)
0.010	0.025	0.050
- 0.010	- 0.025	- 0.050

Figura 59. Diagrama momento-rotación y criterios de aceptación: V-30x50_(P2,4,6_DE_3)

VIGA-30X45_(PB_1,2,3)_M3		
Pto	Momento (Kg-m)	Rotación (rad)
- E	- 1,820.77	- 0.051
- D	- 1,820.77	- 0.026
- C	- 10,960.842	- 0.026
- B	- 9,103.851	- 0.001
А	0	0
В	9,103.851	0.001
С	10,960.842	0.026
D	1,820.77	0.026
E	1,820.77	0.051

*Tabla 52. Datos de momento-rotación y criterios de aceptación, V-30*45_(PB_1,2,3)*

Criterios de aceptación		
IO (rad)	LS (rad)	CP (rad)
0.010	0.025	0.050
- 0.010	- 0.025	- 0.050

Momento - Rotación (M- θ)

Figura 60. Diagrama momento-rotación y criterios de aceptación: V-30x45_ (PB_1,2,3)

Tabla	<i>53</i> .
-------	-------------

Datos de momento-rotación y criterios de aceptación, V-30*45_(PD_1,2,3)

	VIGA-30X45_(PD_1,2,3)_M3							
Pto	Momento (Kg-m)	Rotación (rad)						
- E	- 1,820.77	- 0.051						
- D	- 1,820.77	- 0.026						
- C	- 10,960.842	- 0.026						
- B	- 9,103.851	- 0.001						
А	0	0						
В	9,103.851	0.001						
С	10,960.842	0.026						
D	1,820.77	0.026						
E	1,820.77	0.051						

Criterios de aceptación							
IO (rad) LS (rad) CP (rad)							
0.010	0.025	0.050					
- 0.010	- 0.025	- 0.050					

Figura 61. Diagrama momento-rotación y criterios de aceptación: V-30x45_ (PD_1,2,3)

	VIGA-60X20_(PC_3)_M3							
Pto	Momento (Kg-m)	Rotación (rad)						
- E	- 522.692	- 0.052						
- D	- 522.692	- 0.027						
- C	- 2,939.514	- 0.027						
- B	- 2,613.458	- 0.002						
А	0	0						
В	2,613.458	0.002						
С	2,939.514	0.027						
D	522.692	0.027						
E	522.692	0.052						

Tabla 54. Datos de momento-rotación y criterios de aceptación, V-60*20_(PC_3)

Criterios de aceptación								
IO (rad)	CP (rad)							
0.010	0.025	0.050						
- 0.010	- 0.025	- 0.050						

Momento - Rotación (M- θ)

2900

900

-1100

0,005

-0,05

Modelo inelástico elementos barra (Viga – Columna) 4.1.6.3.

Las rótulas plásticas de vigas y columnas se asignarán en los extremos de mismos.

0,045

LONGITUD DE RÓTULA PLÁSTICA - COLUMNAS										
			Alt vigo	Alt vigo	Longitud r	elativa	Longitud r	elativa		
Nivel	Pórtico	Long.	infor	All. Viga	izquier	da	derect	ha		
			iner.	sup.	Calculado	Usar	Calculado	Usar		
	Pórtico 1, 3, 5, 7 - Eje B	3.35	0	0.65	0.000	0.05	0.806	0.79		
Drimor	Eje C	3.35	0	0.45	0.000	0.05	0.866	0.85		
rimer	Eje D	3.35	0	0.45	0.000	0.05	0.866	0.85		
nivel	Pórtico 2, 4, 6 - Eje B	3.35	0	0.65	0.000	0.05	0.806	0.79		
	Eje D	3.35	0	0.65	0.000	0.05	0.806	0.79		
	Pórtico 1, 3, 5, 7 - Eje B	3.2	0	0.65	0.000	0.05	0.797	0.78		
Comundo	Eje C	3.2	0	0.45	0.000	0.05	0.859	0.84		
Segundo	Eje D	3.2	0	0.45	0.000	0.05	0.859	0.84		
mver	Pórtico 2, 4, 6 - Eje B	3.2	0	0.65	0.000	0.05	0.797	0.78		
	Eje D	3.2	0	0.65	0.000	0.05	0.797	0.78		
	Pórtico 1, 3, 5, 7 - Eje B	3.25	0	0.45	0.000	0.05	0.862	0.84		
Tanaar	Eje C	5.2	0	0.45	0.000	0.05	0.913	0.90		
Tercer	Eje D	3.25	0	0.45	0.000	0.05	0.862	0.84		
nivei	Pórtico 2, 4, 6 - Eje B	3.25	0	0.5	0.000	0.05	0.846	0.82		
	Eie D	3.25	0	0.5	0.000	0.05	0.846	0.82		

Tabla 55. Longitud relativa de rótulas plásticas (momento – rotación) en columnas

Fuente: Elaboración propia

Tabla 56.

Longitud relativa de rótulas plásticas (momento – rotación) en vigas.

LONGITUD DE RÓTULA PLASTICA - VIGAS										
						Longitud r	elativa	Longitud r	elativa	
Nivel	Pórtico	Tramo	Long.	Col. izq.	Col. der.	izquier	da	derect	ha	
						Calculado	Usar	Calculado	Usar	
		AB	2.28	0	0.15	0.000	0	0.934	0.92	
	Pórtico 1,3,5,7	BC	3.85	0.45	0.125	0.117	0.13	0.968	0.95	
Primerv		CD	3.85	0.125	0.45	0.032	0.05	0.883	0.87	
segundo	Pórtico 246	AB	2.28	0	0.15	0.000	0	0.934	0.92	
nivel	1 011100 2,4,0	BD	7.7	0.45	0.45	0.058	0.07	0.942	0.93	
niver	Pórtico B	todos	4.05	0.15	0.15	0.037	0.05	0.963	0.95	
	Pórtico D	todos	4.05	0.15	0.15	0.037	0.05	0.963	0.95	
	Pórtico C	todos	4.05	0.15	0.15	0.037	0.05	0.963	0.95	
		AB	2.393	0	0.15	0.000	0	0.937	0.92	
	Pórtico 1,3,5,7	BC	4.04	0.45	0.3	0.111	0.13	0.926	0.91	
		CD	4.041	0.3	0.45	0.074	0.09	0.889	0.87	
		DE	1.658	0.15	0	0.090	0.11	0.000	0	
Tercer		AB	2.393	0	0.15	0.000	0	0.937	0.92	
nivel	Pórtico 2,4,6	BC	4.04	0.45	0.3	0.111	0.13	0.926	0.91	
IIIVEI		CD	4.041	0.3	0.45	0.074	0.09	0.889	0.87	
		DE	1.658	0.15	0	0.090	0.11	0.000	0	
	Pórtico B	todos	4.05	0.15	0.15	0.037	0.05	0.963	0.95	
	Pórtico D	todos	4.05	0.15	0.15	0.037	0.05	0.963	0.95	
	Pórtico C	todos	4.05	0.15	0.15	0.037	0.05	0.963	0.95	

4.1.6.4. Patrón de acciones laterales

A. Sistema de cargas

Del análisis elástico se obtienen las fuerzas cortantes que serán usados como sistemas de

cargas laterales.

• Dirección XX

Tabla 57.

Fuerzas laterales por niveles que actúan en la estructura – dirección XX

Nivel	Fuerza Cortante (V)	Fuerza Horizontal (F)	Factor	Fuerza lateral
3	42,216.700	42,216.700	1.517	1,517.233
2	94,277.300	52,060.600	1.871	1,871.015
1	122,102.090	27,824.790	1.000	1,000.000

Fuente: Elaboración propia

• Dirección YY

Tabla 58.

Fuerzas laterales por niveles que actúan en la estructura – dirección XX

Ninol	Fuerza	Fuerza	Factor	Fuerza
INIVEI	Cortante (V)	Horizontal (F)	Factor	lateral
3	121,137.590	121,137.590	1.738	1,738.447
2	263,293.400	142,155.810	2.040	2,040.080
1	332,974.900	69,681.500	1.000	1,000.000

Fuente: Elaboración propia

B. Sistema de desplazamientos

Otro de los patrones usados en el análisis pushover será el sistema de desplazamientos

mediante los modos fundamentales de vibración.

Los modos usados como sistema de desplazamientos para el análisis pushover son:

Dirección X-X (Modo de vibración 1)

Dirección Y-Y (Modo de vibración 3)

Tabla 59.

Ratios	de	masas	modales	participantes
				, ,

TABLE: Modal Participating Mass Ratios									
OutputCase	StepType	StepNum	Period	UX	UY	SumUX	SumUY	RZ	SumRZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.914656	0.895	9.163E-11	0.895	9.163E-11	0.00001391	0.00001391
MODAL	Mode	2	0.271503	0.087	0.000001859	0.982	0.00000186	0.012	0.012
MODAL	Mode	3	0.246369	0.000001097	0.854	0.982	0.854	0.0003335	0.012
MODAL	Mode	4	0.230824	0.0009358	0.0003459	0.983	0.855	0.851	0.863
MODAL	Mode	5	0.158346	0.017	5.323E-10	1	0.855	0.0003692	0.864
MODAL	Mode	6	0.110465	1.366E-09	0.026	1	0.881	0.00001218	0.864
MODAL	Mode	7	0.104805	0.00002308	2.013E-07	1	0.881	0.013	0.877
MODAL	Mode	8	0.098358	1.265E-10	0.005044	1	0.886	0.0000144	0.877
MODAL	Mode	9	0.096901	4.588E-07	0.00001741	1	0.886	0.00811	0.885
MODAL	Mode	10	0.096389	1.797E-10	0.029	1	0.914	0.000004558	0.885
MODAL	Mode	11	0.094637	3.453E-07	1.348E-09	1	0.914	0.013	0.898
MODAL	Mode	12	0.093877	1.335E-10	0.0002335	1	0.914	4.165E-09	0.898

Fuente: SAP2000 v.20.0.0

4.1.6.5. Curva de capacidad

Figura 63. Curva de capacidad - dirección XX (Fuente: SAP2000 v20.0.0)

Figura 64. Curva de capacidad - Dirección YY (Fuente: SAP2000 v20.0.0)

Figura 65. Falla de la estructura del análisis PUSH_X_NEG. (Fuente: SAP2000 v20.0.0)

Figura 66. Falla de la estructura del análisis PUSH_Y_NEG. (Fuente: SAP2000 v20.0.0)

Colores designados por el SAP2000 v20.0.0 para los niveles de desempeño

ATC-40	Fluencia	Ocupación inmediata	Seguridad de vida	Prevención del colapso	Seguridad limitada	Estabilidad estructural	Colapso
NIVEL DE	В	10	LS	СР	C	D	E
VISION 2000	Operacional	Funcional	Seguridad de vida	Próximo al colapso	Colapso	Posterior	al colapso

4.1.6.6. Demanda sísmica

Para la evaluación del desempeño sísmico, la demanda sísmica se representa por espectros de demanda para cada uno de los niveles de sismicidad, para construir estos espectros de demanda es necesario identificar primero la aceleración máxima en cada nivel de peligro.

Tabla 60.

Sismos de diseño y su aceleración asociada

Sismo de Diseño	Aceleración asociada a la ZONA 3
Ocasional (SO)	(SR/2) = 0.175 g
Raro (SR)	0.35 g
Muy raro (SMR)	(SRx1.3) = 0.455 g

Fuente: E-030, E-070, ATC-40, 1996

Los espectros de demanda se obtuvieron con base a los requerimientos de la Norma E-030

y fueron determinados tanto para la dirección XX y la dirección YY

Tabla 61.

Parámetros para determinar los espectros de demanda sísmica

Z	0.175	Aceleración asociada al sismo ocasional para la zona 3
	0.35	Aceleración asociada al sismo raro para la zona 3
	0.455	Aceleración asociada al sismo muy raro para la zona 3
U	1	Factor de uso, se consideró la unidad por tratarse de
		una evaluación
S	1.15	Factor de amplificación de suelo
R	1	

Tabla 62.Datos de los espectros de demanda

SISMO O	CASIONAL	SISMO OCASIONAL			
T (s)	Sa/g	T (s)	Sa/g		
0	0.50313	0.65	0.46442	SISMO O	CASIONAL
0.02	0.50313	0.7	0.43125	T (s)	Sa/g
0.04	0.50313	0.75	0.40250	1.6	0.18867
0.06	0.50313	0.8	0.37734	1.65	0.18295
0.08	0.50313	0.85	0.35515	1.7	0.17757
0.1	0.50313	0.9	0.33542	1.75	0.17250
0.12	0.50313	0.95	0.31776	1.8	0.16771
0.14	0.50313	1	0.30188	1.85	0.16318
0.16	0.50313	1.05	0.28750	1.9	0.15888
0.18	0.50313	1.1	0.27443	1.95	0.15481
0.2	0.50313	1.15	0.26250	2	0.15094
0.25	0.50313	1.2	0.25156	3	0.06708
0.3	0.50313	1.25	0.24150	4	0.03773
0.35	0.50313	1.3	0.23221	5	0.02415
0.4	0.50313	1.35	0.22361	6	0.01677
0.45	0.50313	1.4	0.21563	7	0.01232
0.5	0.50313	1.45	0.20819	8	0.00943
0.55	0.50313	1.5	0.20125	9	0.00745
0.6	0.50313	1.55	0.19476	10	0.00604

SISMO	RARO	SISMO RARO			
T (s)	Sa/g	T (s)	Sa/g		
0	1.00625	0.65	0.92885	SISMO	RARO
0.02	1.00625	0.7	0.86250	T (s)	Sa/g
0.04	1.00625	0.75	0.80500	1.6	0.37734
0.06	1.00625	0.8	0.75469	1.65	0.36591
0.08	1.00625	0.85	0.71029	1.7	0.35515
0.1	1.00625	0.9	0.67083	1.75	0.34500
0.12	1.00625	0.95	0.63553	1.8	0.33542
0.14	1.00625	1	0.60375	1.85	0.32635
0.16	1.00625	1.05	0.57500	1.9	0.31776
0.18	1.00625	1.1	0.54886	1.95	0.30962
0.2	1.00625	1.15	0.52500	2	0.30188
0.25	1.00625	1.2	0.50313	3	0.13417
0.3	1.00625	1.25	0.48300	4	0.07547
0.35	1.00625	1.3	0.46442	5	0.04830
0.4	1.00625	1.35	0.44722	6	0.03354
0.45	1.00625	1.4	0.43125	7	0.02464
0.5	1.00625	1.45	0.41638	8	0.01887
0.55	1.00625	1.5	0.40250	9	0.01491
0.6	1.00625	1.55	0.38952	10	0.01208

MUY	RAR0	MUY RARO			
T (s)	Sa/g	T (s)	Sa/g		
0	1.30813	0.65	1.20750	MUY	RARO
0.02	1.30813	0.7	1.12125	T (s)	Sa/g
0.04	1.30813	0.75	1.04650	1.6	0.49055
0.06	1.30813	0.8	0.98109	1.65	0.47568
0.08	1.30813	0.85	0.92338	1.7	0.46169
0.1	1.30813	0.9	0.87208	1.75	0.44850
0.12	1.30813	0.95	0.82618	1.8	0.43604
0.14	1.30813	1	0.78488	1.85	0.42426
0.16	1.30813	1.05	0.74750	1.9	0.41309
0.18	1.30813	1.1	0.71352	1.95	0.40250
0.2	1.30813	1.15	0.68250	2	0.39244
0.25	1.30813	1.2	0.65406	3	0.17442
0.3	1.30813	1.25	0.62790	4	0.09811
0.35	1.30813	1.3	0.60375	5	0.06279
0.4	1.30813	1.35	0.58139	6	0.04360
0.45	1.30813	1.4	0.56063	7	0.03204
0.5	1.30813	1.45	0.54129	8	0.02453
0.55	1.30813	1.5	0.52325	9	0.01938
0.6	1.30813	1.55	0.50637	10	0.01570

Figura 67. Espectros de demanda sísmica

4.2. PRESENTACIÓN DE RESULTADOS, TABLAS, GRAFICOS, FIGURAS

4.2.1. Desempeño de la estructura en dirección XX

4.2.1.1. Curva de capacidad y modelo bilineal – dirección XX

Figura 68. Curva de capacidad y modelo bilineal - dirección XX (Fuente: SAP2000 v20.0.0)

4.2.1.2. Sectorización de la curva de capacidad – dirección XX

Tabla 63.

Rangos de desplazamiento para cada nivel de desempeño – dirección XX

Nivel de	Rango de desplazamientos (cm)			
desempeño	Límite inferior	Límite superior		
Operacional	0	4.000		
Funcional	4.000	7.729		
Seguridad de vida	7.729	11.457		
Cercano al colapso	11.457	13.943		
colapso	13.943	16.429		
ΔFE= 4.000 cm				
Δp= 12.429 cm				

Figura 69. Sectorización de la curva de capacidad – dirección XX

4.2.1.3. Puntos de desempeño para las demandas sísmicas – dirección XX

A. Punto de desempeño para sismo ocasional - dirección XX

Figura 70. Obtención del punto de desempeño – Sismo ocasional – dirección XX (Fuente: SAP2000 v20.0.0)

Figura 71. Sectorización de la curva de capacidad y punto de desempeño - Sismo ocasional - dirección XX

B. Punto de desempeño para sismo raro - dirección XX

Figura 72. Obtención del punto de desempeño – Sismo raro – dirección XX (Fuente: SAP2000 v20.0.0)

C. Punto de desempeño para sismo muy raro - dirección XX

Figura 73. Obtención del punto de desempeño – Sismo muy raro – Dirección XX (Fuente: SAP2000 v20.0.0)

4.2.2. Desempeño de la estructura en dirección YY

4.2.2.1. Curva de capacidad y modelo bilineal – dirección YY

Figura 74. Curva de capacidad y modelo bilineal - dirección YY (Fuente: SAP2000 v20.0.0)

4.2.2.2. Sectorización de la curva de capacidad – dirección YY

Tabla 64.

Rangos de desplazamiento para cada nivel de desempeño – dirección YY

Nivel de	Rango de desplazamientos (cm)			
desempeño	Límite inferior	Límite superior		
Operacional	0	2.300		
Funcional	2.300	7.764		
Seguridad de vida	7.764	13.228		
Cercano al colapso	13.228	16.871		
colapso	16.871	20.513		
ΔFE= 2.300 cm				
Δp= 18.213 cm				

Figura 75. Sectorización de la curva de capacidad – dirección YY

4.2.2.3. Puntos de desempeño para las demandas sísmicas – dirección YY

A. Punto de desempeño para sismo ocasional - dirección YY

Figura 76. Obtención del punto de desempeño – Sismo ocasional – dirección YY (Fuente: SAP2000 v20.0.0)

Figura 77. Sectorización de la curva de capacidad y punto de desempeño - Sismo ocasional - dirección YY

B. Punto de desempeño para sismo raro - dirección YY

Figura 78. Obtención del punto de desempeño – Sismo raro – dirección YY (Fuente: SAP2000 v20.0.0)

Figura 79. Sectorización de la curva de capacidad y punto de desempeño - Sismo Raro - dirección YY

C. Punto de desempeño para sismo muy raro - dirección YY

Figura 80. Obtención del punto de desempeño – Sismo muy raro – dirección YY (Fuente: SAP2000 v20.0.0)

Figura 81. Sectorización de la curva de capacidad y punto de desempeño - Sismo muy raro - dirección YY

4.3. PRUEBA DE HIPOTESIS

De los resultados obtenidos, se acepta la hipótesis: El desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco, incumple los objetivos de desempeño propuesto por el comité Visión 2000.

4.4. DISCUCIÓN DE RESULTADOS

Esta investigación tuvo como propósito Evaluar el desempeño sismorresistente, de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco.

La evaluación del desempeño sismorresistente se realizó mediante un modelo computarizado de la estructura utilizando el software computacional SAP2000 v20.0.0.

Se planteó como hipótesis al problema general, que el desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca – Pasco, incumple los objetivos de desempeño propuesto por el comité visión 2000.
 En la siguiente tabla se presenta los objetivos de desempeño sísmico que debería cumplir una edificación esencial, según la propuesta del comité visión 2000.

Demanda	Nivel de desempeño				
sísmica	Operacional	Operacional Euroional		Próximo	Colonso
Sistifica	Operacional	Functonal	de vida	al colapso	Colapso
Ocasional	X				
Raro		X			
Muy raro			X		

Objetivos de desempeño propuesto por el comité visión 2000

Luego de realizar el modelo y análisis computarizado se obtienen los siguientes resultados

Dirección X-X

Demanda	Nivel de desempeño					
sísmica	Operacional	Funcional	Seguridad	Próximo	Colanso	
Sistifica	Operacionar	1 uncional	de vida	al colapso	Colapso	
Ocasional		Χ				
Raro					→X	
Muy raro					$\rightarrow X$	

Dirección Y-Y

Demanda	Nivel de desempeño					
sísmica	Operacional	Funcional	Seguridad de vida	Próximo al colapso	Colapso	
Ocasional	X					
Raro		X				
Muy raro			Χ			

El desempeño sismorresistente de la estructura del pabellón B, incumple los objetivos de desempeño propuesto por el comité visión 2000

Para el primer problema específico se tiene la hipótesis: Los puntos de desempeño de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca - Pasco, exceden los rangos de desplazamiento establecidos por el comité visión 2000.
 En las siguientes tablas se presentan los rangos de desplazamiento que deben alcanzar los

puntos de desempeño, según el comité visión 2000.

Dirección XX

Demanda	Nivel de	Rango de desplazamientos		
Demanda	desemneño	Límite	Límite	
sisinca	desempeno	Inferior (cm)	Superior (cm)	
Sismo ocasional	Operacional	0	4.000	
Sismo raro	Funcional	4.000	7.729	
Sismo muy raro	Seguridad de vida	7.729	11.457	

Dirección YY

Demanda	Nivel de	Rango de desplazamientos		
Demanua	desempeño	Límite	Límite	
Sistilica	desempeno	Inferior (cm)	Superior (cm)	
Sismo ocasional	Operacional	0	2.300	
Sismo raro	Funcional	2.300	7.764	
Sismo muy raro	Seguridad de vida	7.764	13.228	

Luego de realizar el modelo y análisis computarizado se obtienen los siguientes desplazamientos para los puntos de desempeño.

Dirección XX

Demanda	Puntos de
sísmica	desempeño (cm)
Sismo ocasional	7.219
Sismo raro	Más allá del punto de falla
Sismo muy raro	Más allá del punto de falla

Dirección YY

Demanda	Puntos de
sísmica	desempeño (cm)
Sismo ocasional	1.667
Sismo raro	3.880
Sismo muy raro	8.456

Los puntos de desempeño exceden los rangos de desplazamiento establecidos por el Comité Visión 2000.

 Para el segundo problema específico se tiene la hipótesis: los resultados del análisis estático no lineal pushover frente al análisis recomendado por la norma E030, se asemeja al comportamiento real de la estructura. En efecto con el análisis estático no lineal Pushover, se tiene el trabajo en los dos rangos: elástico e inelástico, tal como se observa en el modelo bilineal de la curva de capacidad, donde el Punto de Fluencia Efectiva (FE) es la frontera entre el límite elástico e inelástico de la estructura, apreciando así el comportamiento más cercano a la realidad de la estructura. Además, se obtuvo otros resultados como: ductilidad disponible y sobre resistencia de la estructura.

CONCLUSIONES

 El desempeño sismorresistente de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca – Pasco, incumple los objetivos de desempeño propuesto por el comité visión 2000, ya que están por encima de las exigencias de dicha propuesta, como se puede apreciar en los siguientes cuadros:

Dirección XX

Domondo		Nive	l de desempe	eño	
Demanda			a '11		
sismica	Operacional	Funcional	Seguridad	Proximo al	Colapso
	Ĩ		de vida	colapso	1
Ocasional	X	Χ			
Raro		Χ			→x
Muy raro			X		→x

Dirección YY

	Nivel de desempeño				
Demanda					
sísmica	Operacional	Funcional	Seguridad	Próximo al	Colanso
	Operacional	Functonal	de vida	colapso	Colapso
Ocasional	XX				
Raro		XX			
Muy raro			XX		

X: Objetivos de la propuesta del COMITÉ VISIÓN 2000 X: Objetivos alcanzados por la estructura del pabellón B

 Los puntos de desempeño de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco, Yanahuanca – Pasco, exceden los rangos de desplazamiento establecidos por el comité visión 2000.

Dirección XX

		Rango de desplazamientos		
Demanda	Nivel de			Punto de
sísmica	desempeño	Límite	Límite	desempeño (cm)
		inferior (cm)	superior (cm)	
Sismo ocasional	Operacional	0	4.000	7.219
Sismo raro	Funcional	4.000	7.729	Más allá del punto de falla
Sismo muy	Seguridad de	7 720	11 /57	Más allá del
raro	vida	1.129	11.437	punto de falla

Dirección YY

		Rango de		
Demanda	Nivel de	desplazamientos		Punto de
sísmica	desempeño	Límite	Límite	desempeño (cm)
		inferior (cm)	superior (cm)	
Sismo ocasional	Operacional	0	2.300	1.667
Sismo raro	Funcional	2.300	7.764	3.880
Sismo muy raro	Seguridad de vida	7.764	13.228	8.456

3. De la evaluación del desempeño sismorresistente utilizando el análisis estático no lineal pushover, se concluye que los resultados obtenidos, se asemeja a un comportamiento más real de la estructura, ya que este análisis trabaja conjuntamente en el rango elástico e inelástico, en comparación con el análisis recomendado por la norma E-030, que solo trabaja en el rango elástico.

Dirección XX

Ductilidad disponible	$u = \frac{\Delta max}{\Delta FE}$	$u = \frac{16.429}{4.00}$	4.107
Sobre resistencia	$SR = \frac{Vmax}{\Delta Diseño}$	$SR = \frac{119584.830 \ kg}{122102.090 \ kg}$	0.979

Dirección YY

Ductilidad disponible	$u = \frac{\Delta max}{\Delta FE}$	$u = \frac{20.513}{2.30}$	8.919
Sobre resistencia	$SR = \frac{Vmax}{\Delta Diseño}$	$SR = \frac{538848.010 \ kg}{332974.920 \ kg}$	1.618

4. La estructura analizada no cumple con nuestra norma sismorresistente E-030, debido a que se muestra muy flexible en la dirección XX, llegando a experimentar distorsiones de entrepiso que superan los límites permisibles y una sobre resistencia menor a la unidad.

RECOMENDACIONES

- Se recomienda efectuar estudios de evaluación del desempeño sismorresistente en estructuras esenciales para conocer su comportamiento más probable, y conocer si los objetivos de desempeño alcanzados cumplen, o no, con la propuesta del comité visión 2000. De este modo poder planificar y mitigar posibles consecuencias de los sismos.
- 2. Se recomienda tener mucho cuidado en el cálculo de los puntos de desempeño, ya que de estos valores depende el desempeño sismorresistente que alcanzará la estructura analizada.
- 3. Se recomienda realizar un análisis estático no lineal pushover para la evaluación de desempeño sismorresistente de una estructura, ya que sus resultados dan a conocer el comportamiento más real de la estructura, debido a que trabaja en el rango elástico e inelástico.
- Reforzar la estructura mediante el uso de placas en la dirección XX, para satisfacer las recomendaciones de la Norma E-030 y así mejorar el desempeño sismorresistente de la estructura.

BIBLIOGRAFIA

- SEAOC (Structural Engineers Association of California): Performance Based Seismic Engineering of Buildings, Vision 2000 committee, Sacramento, California 1995
- ATC-40 (Applied Technology Counsil): Seismic Evaluation and Retrofit of concrete building, 1996.
- FEMA 440 (Agencia Federal para el Manejo de Emergencias): Improvement of Nonlinear Static Seismic Analysis Procedures, 2005.
- ASCE 41-13 (Sociedad Americana de Ingenieros Civiles): Seismic Evaluation and Retrofit of Existing Buildings, 2014.
- Santana, R. (2012) en su tesis magistral "Diseño por desempeño de estructuras de albañilería confinada". Universidad Nacional de Ingeniería. Lima - Perú
- Navarro, L. y Fernández, V. (2006). En su tesis "Desempeño Sísmico de un Edificio Aporticado de Seis Pisos Diseñado con las Normas Peruanas de Edificaciones". Pontificia Universidad Católica del Perú PUCP. Lima- Perú.
- Bolaños, M. (215) en su tesis "Desempeño Sismorresistente del Edificio F de la Universidad Nacional de Cajamarca". Universidad Nacional de Cajamarca. Perú
- Ottazzi, G. (2003), Apuntes del curso: Concreto Armado 1. Fondo Editorial PUCP. Lima.
- Aguiar R, Mora D. y Rodríguez M. (2015): Diagrama momento-curvatura y momentorotación para elementos de hormigón armado y acero con ASCE/SEI 41 y sistema de computación Ceinci-Lab.
- Bertero, V. (2001): Ingeniería sísmica basada en el desempeño de las construcciones. España:
 2º Congreso Iberoamericano de Ingeniería Sísmica.

- PIQUÉ DEL POZO, Javier (2008). Diseño por capacidad: estrategia neozelandesa de diseño sismorresistente. Revista "El Ingeniero Civil".
- CCIP PERÚ (Centro de Capacitación e Investigación Profesional). Curso: Análisis Estático no Lineal Pushover y Desempeño Estructural.
- Park, R. y Paulay, T. (1992): libro de Estructuras de concreto reforzado
- Norma Técnica de Edificaciones E-020, Cargas
- Norma Técnica E-030, Diseño sismorresistente.
- Norma Técnica E-060, Concreto Armado.
- Norma Técnica E-070, albañilería.

ANEXOS

ANEXO 01

INSTRUMENTO DE RECOLECCIÓN DE DATOS

FICHA TÉCNICA DE INSPECCIÓN

FICHA TÉCNICA DE INSPECCIÓN RÁPIDA

DURACIÓN DE VISITA 2.5 horas

I.	INFOR	MACIÓ	ÓN GI	ENERAL	

03-may-18 4.00 pm

FECHA HORA

	I. INFORMACION GENERAL
A. UBICACIÓN:	
1. Nombre de la estructura	Institución Educatica Ernesto Diez Canseco (Pabellón B)
2: Distrito	Yanahuanca
3. Provincia	Daniel A. Carrión
4. Departamento	Pasco
B. INFORMACIÓN DE LA INFRAE	STRUCTURA:
1. Tipo de establecimiento:	Estatal
2. Año de construcción:	2011
3. Numero de pisos	3
4. Area construida:	ico 2465 m2 Area total construido 700.06 m2
Area construida segundo	$\frac{240.5}{102}$ miz Area total construida $\frac{700.06}{102}$ miz
Area construida segundo	226.78 m ²
5. Area techada:	299.52 m2
C. INFORMACIÓN COMPLEMENT Existe información de planos	ARIA:
Ubicación y localización	Si X No
Arquitectura	Si X No
Estructura	Si X No
Instalaciones eléctricas	Si X No
Instalaciones sanitarias	Si X No
	II. COMPONENTE ESTRUCTURAL
A. INFRAESTRUCTURA FÍSICA:	
Altura Primer piso: 3.35	m (desde nivel de terreno natura 0+00 a piso terminado)
Altura segundo piso: 3.2	m (desde nivel de piso terminado a nivel de piso terminado)
Altura tercer piso: Variable]
B. INFORMACIÓN DE SUELO (Exp	ediente técnico):
Capacidad portante: 1.5	kg/cm2
C. CATEGORIA DE LA ESTRUCTU	- IRA DE ACUERO A LA NORMA SISMORRESISTENTE E-030:
A2 X	
A: Edificaciones esenciales	
B: Edificaciones importante	3
C: Edificaciones comunes	
D: Edificaciones temporales	
D. CICTEMA ECTDUCTUDAL.	
El sistema estructural se identifica en a	mbas direcciones: X_V
Sistema estructural en dirección "X"	Sistema estructural en dirección "Y"
Albañileria confinada	Albañileria confinada X
Pórticos de concreto armado	X Pórtico de concreto armado
Sistema dúal (Pórticos y placas)	Sistema dúal (Pórticos y placas)
Muros estructurales (placas)	Muros estructurales (placas)
E: SECCIÓN DE ELEMENTOS PRE	DOMINANTES:
Columnas: C	0.30 x 0.60 Rectangular Cantidad 6
C	2 0.30 x 0.60 Rectangular Cantidad 8
C	B 0.30 x 0.25 Rectangular Cantidad 4

Vigas principales:	0.30 x 0.65 Red	ctangular
	0.30 x 0.45 Red	ctangular
	0.30 x 0.50 Rea	ctangular
Vigas secundarias:	0.30 x 0.45 Red	ctangular
	0.15 x 0.40 Red	ctangular
	0.15 x 0.50 Red	ctangular
	0.15 x 0.65 Red	ctangular
Muros de albañileria:	Espesor: 0.25 m	
F. SISTEMA PISO TECH	Ю	
Primer nivel:	Losa aligerada horizontal X Espesor 0.2 m	Losa maciza
Segundo nivel:	Losa aligerada horizontal X Espesor 0.2 m	Losa maciza
Tercer nivel:	Losa aligerada inclinada X Espesor 0.2 m	Losa maciza

III. DESCRIPCIÓN DE LA ESTRUCTURA

La estructura del pabellón B está construida de concreto armado, su estructurado es a base de un sistema aporticado en la dirección X-X y de muros portantes en la dirección Y-Y (muros, columnas y vigas). La estructura está compuesta de 03 niveles, los entrepisos están conformados a base de losas aligeradas horizontales y el techo del ultimo nivel presenta losas aligeradas inclinadas conformando un techo a dos aguas.
ANEXO 02

MODELO INELÁSTICO DE LAS SECCIONES DE LOS ELEMENTOS ESTRUCTURALES (RELACIÓN MOMENTO - ROTACIÓN DE VIGAS Y COLUMNAS USANDO EL

SOFTWARE COMPUTACIONAL PTC MATHCAD PRIME 4.0)

	INELASTICO DE LA COLUN	INA C1-30x60 (RÓTULA PLÁSTICA) -	EJE LOCAL 3-3
I. SECCION GENER.	AL			
$b := 30 \ cm$ Ancho	de la sección $r := 5 \ cm$	Recubrimi	ento inferior 305/8"	
$h \coloneqq 60 \ cm$ Altura	de la sección $d' \coloneqq 5 \ cn$	Recubrimi	ento superior 203/4"-	
$d := h - r = 55 \ cm$	Altura efectiva			0.60 2-2
2. MATERIALES			305/8"-	3-:
$f'c \coloneqq 210 \frac{kgj}{2}$	Resistencia del concreto			
<i>cm</i>	haf haf		1	0.30
$Ec \coloneqq 15000 \cdot \sqrt{f'c \cdot - \frac{f'c}{c}}$	$\frac{m^2}{m^2} = 217370.651 \frac{m^2}{m^2}$ M	lódulo de elastici mereto	idad del (7 Ø3/8", 1@	0.05, 6@0.10, Rto.@0.25
$Es \coloneqq 2000000 \frac{kgf}{cm^2}$	Módulo de elasticidad fy del acero	$\mu := 4200 \frac{kgf}{cm^2}$	Esfuerzo cedente del acero de refuerzo	$\varepsilon cu \coloneqq 0.003$ Deformación últin del concreto
$\varepsilon y \coloneqq \frac{fy}{Es} = 0.0021$	Deformación cedente n del acero	$:=\frac{Es}{Ec}=9.201$	Relación de módulos de elasticidad	$\beta_1 \coloneqq 0.85$
3. ACERO DE REFUI	ERZO			
$db_1 := \frac{5}{in} - 1.5$	$A_{1} := \frac{\pi \cdot db_{1}^{2}}{-1} \circ db_{1}^{2}$	8 cm^2 db	$a := \frac{3}{m} = 1.905 \text{ cm}$	$A_{a} := \frac{\boldsymbol{\pi} \cdot db_{2}^{2}}{\boldsymbol{\pi} \cdot db_{2}^{2}} = 2.85 \ \boldsymbol{cm}^{2}$
8	4	uu	4	4
		As	$a := 3 \cdot A_1 + A_2 = 8.79$ cm	$A's := 3 \cdot A_1 + A_2 = 8.79$ cm
4. PLANTEAMIENTO).			
A. Presentar el diagra	ıma de interacción de la sección.			
Cálculo de los mor	nentos últimos y de cedencia para	los puntos carac	terísticos	
Po= Compresión p	ura Pb= F	'alla balanceada	Pfp=	Falla a flexión pura
P1= Falla controla	da por compresión P2= F	`alla controlada p	oor tracción To= I	Falla a tracción pura
* El acero de r	efuerzo inferior a compresión ya co	edió * (Comportamiento elasto-plá	istico del acero
		$\varepsilon_c = \varepsilon_{cu}$ $\varepsilon'_s > \varepsilon_y$	$f_c = 0.85 f_c$	
	P_0 d CP			
	$ \xrightarrow{h} \overset{h}{=} \overset{h}{=} \xrightarrow{+} $		C _c F	igura 1.
	As As	$\varepsilon_s > \varepsilon_y$		
	b	Deformación	Esfuerzo	
- Estableciendo eq	uilibrio de fuerzas en la figura 1, se	e tiene:		
$CA's \coloneqq A's \cdot fy =$	36.91 tonnef		Compresión en el acero s	superior
$Cc \coloneqq 0.85 \cdot f'c \cdot (b)$	(h - As - A's) = 318.163 tonn	ef	Compresión en el concre	to
$CAs \coloneqq As \cdot fy = 3$	6.91 tonnef		Compresión en el acero i	nferior
$Po \coloneqq CA's + Cc + Cc$	CAs = 391.984 tonnef		Fuerza axial a compresió	n pura
$ycp \coloneqq \frac{Cc \cdot 0.5 \cdot h}{2}$	$\frac{+CAs \cdot a + CAs \cdot a}{Po} = 30 \text{ cm}$		Posición del centroide pl	ástico medido desde la fibra superio
A 7 Tracción nur	- ~			
* El acoro de "	a efilerzo inferior o tracción ve codi	* Common	tamiento electo plástico de	lacero
* El acero de r	afuerzo superior a tracción va codi	ó * Se doorr	annento clasto-plastico de	zión del concreto
El acero de r	ruerzo superior a tracción ya cedi	o se despr		
	<u>d'</u>			
	-		- T _{A's}	
		$\varepsilon'_{s} > \varepsilon_{s}$	y	
	T_0 d C_P C_P	$\varepsilon'_s > \varepsilon_s$	y	
	T_{o}	ε' _s > ε _.	y	Figura 2.
	T_{o}	$\varepsilon_{s} > \varepsilon_{y}$	γ	Figura 2.
	T_{o}	$\varepsilon_{s} > \varepsilon_{y}$	T_{As}	Figura 2.

- Se verifica que el acero superior a compresión ya cedió y el acero inferior a tracción no ha cedido: $\varepsilon's \coloneqq \frac{\varepsilon cu \cdot (c-d')}{c} = 0.00271 \quad \text{if} (\varepsilon's > \varepsilon y, \text{``ok''}, \text{``No cumple''}) = \text{``ok''} \qquad f's \coloneqq fy = 4200 \frac{kgf}{cm^2}$ $\varepsilon s \coloneqq \varepsilon cu \cdot \frac{(d-c)}{c} = 0.00018 \quad \text{if} (\varepsilon s < \varepsilon y, \text{``ok''}, \text{``No cumple''}) = \text{``ok''} \qquad fs \coloneqq Es \cdot \varepsilon s = 366.525 \frac{kgf}{cm^2}$ - Fuerzas resultantes: $CA's \coloneqq A's \cdot f's \equiv 36.91$ tonnef $Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 235.934$ tonnef $TAs \coloneqq As \cdot fs = 3.221$ tonnef - Curvatura última y momento último : $\phi u 1a \coloneqq \frac{\varepsilon cu}{c} = 0.0058 \frac{1}{m}$ $ycp = 30 \ cm$ $Mu1a \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CAs \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 28.838 \text{ tonnef} \cdot m$ A.4.2. Análisis para la carga axial: $P1b \coloneqq Pb + \frac{(Po - Pb)}{4} = 208.443$ tonnef Hipótesis: % El concreto alcanzó su agotamiento % El acero de refuerzo superior a compresión ya cedió % El acero de refuerzo inferior a tracción no ha cedido % Comportamiento elasto-plástico del acero. - Estableciendo el equilibrio de fuerzas y la relación de deformaciones en la figura 4, se obtiene la ecuación para determinar la profundidad del eje neutro de la sección: $P1b = 0.85 f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fs$ $A \cdot c^{2} + B \cdot c + D = 0$ $B \coloneqq A's \cdot fy + As \cdot Es \cdot \varepsilon cu - P1b = -118.803 \ tonnef$ $c \coloneqq \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 41.466 \text{ } \boldsymbol{cm} \quad \text{Profundidad del eje neutro}$ $D \coloneqq -As \boldsymbol{\cdot} Es \boldsymbol{\cdot} \varepsilon cu \boldsymbol{\cdot} d = -29.001 \ \boldsymbol{tonnef} \boldsymbol{\cdot} \boldsymbol{m}$ - Se verifica que el acero superior a compresion ya cedió y el acero inferior a tracción no ha cedido: $\varepsilon's \coloneqq \frac{\varepsilon cu \cdot (c-d')}{c} = 0.00264$ if $(\varepsilon's > \varepsilon y, \text{``ok''}, \text{``No cumple''}) = \text{``ok''}$ $\varepsilon's \coloneqq \frac{\varepsilon c \dot{u} \cdot (c - d')}{c} = 0.00264 \quad \text{if} \left(\varepsilon's > \varepsilon y, \text{``ok''}, \text{``No cumple''}\right) = \text{``ok''} \qquad f's \coloneqq fy = 4200 \frac{kgf}{cm^2}$ $\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d - c)}{c} = 0.00098 \quad \text{if} \left(\varepsilon s < \varepsilon y, \text{``ok''}, \text{``No cumple''}\right) = \text{``ok''} \qquad fs \coloneqq Es \cdot \varepsilon s = 1958.339 \frac{kgf}{cm^2}$ - Fuerzas resultantes: $TAs := As \cdot fs = 17.21$ tonnef $CA's := A's \cdot f's = 36.91$ tonnef $Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 188.743$ tonnef - Curvatura última y momento último : $ycp = 30 \ cm$ $\phi u1b \coloneqq \frac{\varepsilon cu}{c} = 0.00723 \frac{1}{m}$ $Mu1b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CAs \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 36.891 \text{ tonnef} \cdot m$ A.5. Estudio de falla controlada por tracción: P2 < Pb Pb = 147.263 tonnef A.5.1. Análisis para carga axial: $P2a := \frac{2}{3} \cdot Pb = 98.175$ tonnef Hipótesis: % El concreto alcanzó su agotamiento % El acero de refuerzo superior a compresión ya cedió % El acero de refuerzo inferior a tracción ya cedió % Comportamiento elasto-plástico del acero. $M_2 \begin{pmatrix} P_2 \\ P_2 \\ P_2 \\ P_2 \\ P_2 \\ P_2 \\ P_3 \\ P_4 \\ P_4 \\ P_5 \\ P_5$ Figura 5. Deformación Esfuerzo - Estableciendo el equilibrio de fuerzas en la figura 5, se define directamente la profundidad del eje neutro de la sección, en función a la carga axial aplicada:

$P2a = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fy$	$c \coloneqq \frac{P2a + fy \cdot (As - A's)}{P2a + fy \cdot (As - A's)} = 21.569 \text{ cm}$	Profundidad del eie neutro
	$0.85 \cdot f'c \cdot \beta_1 \cdot b$, , , , , , , , , , , , , , , , , , ,

- Se verifica que el acero superior a compresión ya cedió, y el acero a tracción ya cedió: $\varepsilon's \coloneqq \frac{\varepsilon c u \cdot (c - d')}{c} = 0.0023$ if $(\varepsilon's > \varepsilon y, "Ok", "No cumple") = "Ok"$ $f's := fy = 4200 \frac{kgf}{cm^2}$ $fs := fy = 4200 \frac{kgf}{cm^2}$ $\varepsilon_{s} := \frac{\varepsilon_{cu} \cdot (d-c)}{c} = 0.00465$ if $(\varepsilon_{s} > \varepsilon_{y}, \text{"No cumple"}) = \text{"Ok"}$ - Fuerzas resultantes: $TAs \coloneqq As \cdot fs = 36.91$ tonnef $CA's \coloneqq A's \cdot f's \equiv 36.91$ tonnef $Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 98.175$ tonnef - Curvatura última y momento último : $\phi u2a \coloneqq \frac{\varepsilon cu}{c} = 0.01391 \frac{1}{m}$ ycp = 30 cm $Mu2a \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 38.908 \text{ tonnef} \cdot m$ $P2b \coloneqq \frac{Pb}{3} = 49.088$ tonnef A.5.2. Análisis para carga axial: Hipótesis: % El concreto alcanzó su agotamiento % El acero de refuerzo superior a compresión no ha cedido % El acero de refuerzo inferior a tracción ya cedió % Comportamiento elasto-plástico del acero. - Estableciendo el equilibrio de fuerzas en la figura 5, se define directamente la profundidad del eje neutro de la sección, en función a la carga axial aplicada: $P2b = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot f's - Asfy$ $\begin{array}{l} \left(0.85 \cdot f'c \cdot \beta_1 \cdot b\right) \cdot c^2 + \left(A's \cdot Es \cdot \varepsilon cu - As \cdot fy - P2b\right) \cdot c - \left(A's \cdot Es \cdot \varepsilon cu \cdot d'\right) = 0 \\ A \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot b = 455.175 \underbrace{tonnef}_{B \coloneqq A's \cdot Es \cdot \varepsilon cu - As \cdot fy - P2b = -3} \\ \end{array}$ $Ac^2 + Bc + D = 0$ $B \coloneqq A's \cdot Es \cdot \varepsilon cu - As \cdot fy - P2b = -33.269 \ tonnef$ $c \coloneqq \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 12.097 \text{ cm}$ Profundidad del eje neutro $D \coloneqq -A's \cdot Es \cdot \varepsilon cu \cdot d' = -2.636$ tonnef $\cdot m$ - Se verifica que el acero a compresión no ha cedido y el acero a tracción ya cedió: $\varepsilon's \coloneqq \varepsilon cu \cdot \frac{(c-d')}{c} = 0.00176$ if $(\varepsilon's < \varepsilon y, "Ok", "No cumple") = "Ok"$ $f's \coloneqq Es \cdot \varepsilon's = 3520.064 \frac{kgf}{cm^2}$ $fs \coloneqq fy = 4200 \frac{kgf}{cm^2}$ $\varepsilon s := \varepsilon c u \cdot \frac{(d-c)}{c} = 0.01064$ if $(\varepsilon s > \varepsilon y, "Ok", "No cumple") = "Ok"$ - Fuerzas resultantes: $CA's \coloneqq A's \cdot f's \equiv 30.935$ tonnef $Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 55.063$ tonnef $TAs \coloneqq As \cdot fs = 36.91$ tonnef - Curvatura última y momento último : $ycp = 30 \ cm$ $\phi u2b \coloneqq \frac{\varepsilon cu}{c} = 0.0248 \frac{1}{m}$ $Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 30.649 \text{ tonnef} \cdot m$ $P \coloneqq 0$ tonnef A.6. Flexión pura Hipótesis: % El concreto alcanzó su agotamiento % El acero de refuerzo superior a compresión no ha cedido % El acero de refuerzo a tracción ya cedió % Comportamiento elasto-plástico del acero. $\begin{bmatrix}
 y_{CP} \\
 y_{CP}
\end{bmatrix}$ $h \quad d \quad \underline{}$ Figura 6. 8. > 8. Deformación Esfuerzo - Estableciendo el equilibrio de fuerzas y la compatibilidad de deformaciones en la figura 6, se define una ecuación que permite obtener la profundidad del eje neutro: $0 = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot f's - As \cdot fy$ $A \cdot c^2 + Bc + D = 0$ $(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot Es \cdot \varepsilon cu - As \cdot fy) \cdot c - A's \cdot Es \cdot \varepsilon cu \cdot d' = 0$

$A \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot b = 455.175 \frac{tonnef}{dc}$	$B \coloneqq A's \cdot Es \cdot \varepsilon cu - As \cdot fu = 15.819 \text{ tonn}$	ef
m		-
$D \coloneqq -A's \cdot Es \cdot \varepsilon cu \cdot d' = -2.636 \ tonnef \cdot m$	$c \coloneqq \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 6.069 \text{ cm}$	Profundidad del eje neutro

- Se verifica que el acero superior a compresión no ha cedido y que el acero inferior a tracción ya cedió: $\varepsilon's \coloneqq \varepsilon cu \cdot \frac{(c-d')}{c} = 0.00053 \quad \text{if} \left(\varepsilon's < \varepsilon y, \text{``Ok''}, \text{``No cumple''}\right) = \text{``Ok''} \quad f's \coloneqq Es \cdot \varepsilon's = 1056.715 \frac{kgf}{cm^2}$

$$\varepsilon s := \varepsilon c u \cdot \frac{(d-c)}{c} = 0.02419$$
 if $(\varepsilon s > \varepsilon y, "Ok", "No cumple") = "Ok"$ $fs := fy = 4200 \frac{kgf}{cm^2}$

- Fuerzas resultantes:

 $CA's \coloneqq A's \cdot f's = 9.287 \text{ tonnef} \qquad Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 27.624 \text{ tonnef} \qquad TAs \coloneqq As \cdot fs = 36.91 \text{ tonnef}$ $- \text{Curvatura última y momento último :} \qquad ycp = 30 \text{ cm}$ $\phi ufp \coloneqq \frac{\varepsilon cu}{c} = 0.04943 \frac{1}{m}$

$$Mufp \coloneqq Cc \cdot \left(ycp - \beta_1 \cdot \frac{c}{2}\right) + CA's \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 19.124 \text{ tonnef} \cdot m$$

A.7. Falla en cedencia

A.7.1. Analisis para la carga axial: P2a = 98.175 tonnef Hipótesis:

- % El concreto no ha alcanzado su agotamiento% Comportamiento lineal elástico del concreto
- % El acero de refuerzo inferior a tracción está justo en cedencia

 $2 \cdot A$

% El acero de refuerzo superior a compresión no ha cedido
% Comportamiento elasto-plástico del acero.

- Estableciendo el equilibrio de fuerzas y la compatibilidad de deformaciones en la figura 7, se define una ecuación que permite obtener la profundidad del eje neutro:

$$\left(\frac{Ec \cdot b \cdot \varepsilon y}{2}\right) \cdot c^{2} + \left(A's \cdot Es \cdot \varepsilon y + As \cdot fy + P2a\right) \cdot c - \left(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P2a \cdot d\right) = 0 \qquad A \cdot c^{2} + B \cdot c + D = 0$$

$$A \coloneqq \frac{Ec \cdot b \cdot \varepsilon y}{2} = 684.718 \frac{\text{tonnef}}{\text{m}} \qquad B \coloneqq A's \cdot Es \cdot \varepsilon y + As \cdot fy + P2a = 171.996 \text{ tonnef}$$

$$D \coloneqq -(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P2a \cdot d) = -76.143 \text{ tonnef} \cdot m$$

$$c \coloneqq \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2} = 23.074 \text{ c}$$

- Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido: $\varepsilon's := \varepsilon y \cdot \frac{(c-d')}{d-c} = 0.00119 \quad \text{if} \left(\varepsilon's < \varepsilon y, \text{"Ok", "No cumple"}\right) = \text{"Ok"} \quad f's := Es \cdot \varepsilon's = 2377.761 \frac{kgf}{cm^2}$

- Tambien se verifica que el concreto tenga un comportamiento lineal elástico:

$$fclimite := 0.70 \cdot f'c = 147 \frac{kgf}{cm^2}$$
Esfuerzo límite del comportamiento elástico del concreto
$$\varepsilon c := \frac{\varepsilon y \cdot c}{d - c} = 0.00152$$

$$fc := Ec \cdot \varepsilon c = 329.918 \frac{kgf}{cm^2}$$

$$if (fc < fclimite, "Ok", "No cumple") = "No cumple"$$

- Debido a que no cumple, se debe plantear que el concreto tenga un comportamiento no lineal. Se establece un modelo bilineal equivalente (elasto-plástico). Para ello, se define una deformación elástica del concreto de 0.0008.

$$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{d - c} = 0.00113 \qquad \qquad \text{if} \left(\varepsilon c < \varepsilon c u, \text{``Ok''}, \text{``No cumple''} \right) = \text{``Ok''}$$
$$f c \coloneqq E c \cdot \varepsilon c = 246.363 \frac{kgf}{cm^2} \qquad \qquad \text{if} \left(f c < f c l \text{imite}, \text{``Ok''}, \text{``No cumple''} \right) = \text{``No cumple''}$$

- Debido a que no cumple, se debe plantear que el concreto tenga un comportamiento no lineal. Se establece un modelo bilineal equivalente (elasto-plástico). Para ello, se define una deformación elástica del concreto de 0.0008

- Estableciendo el equilibrio de fuerzas y la relación de deformaciones en la figura 8, se obtiene la ecuación para determinar la profundidad del eje neutro:

 $c^{2} \cdot (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b) - c \cdot ((2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b \cdot d) + 2 \cdot \varepsilon y \cdot f y \cdot (As + A's) + 0.85 \cdot f' c \cdot b \cdot \varepsilon c y \cdot d + 2 \cdot \varepsilon y \cdot P2b) \qquad A \cdot c^{2} + B \cdot c + D = 0 + 0.85 \cdot f' c \cdot b \cdot \varepsilon c y \cdot d^{2} + 2 \cdot \varepsilon y \cdot f y \cdot (As \cdot d + A's \cdot d') + 2 \cdot \varepsilon y \cdot P2b \cdot d = 0 \\ A \coloneqq (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b) = 2.678 \frac{tonnef}{m}$

 $B \coloneqq -((2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f'c \cdot b \cdot d) + 2 \cdot \varepsilon y \cdot fy \cdot (As + A's) + 0.85 \cdot f'c \cdot b \cdot \varepsilon c y \cdot d + 2 \cdot \varepsilon y \cdot P2b) = -2.224 \text{ tonnef}$ $D \coloneqq 0.85 \cdot f'c \cdot b \cdot \varepsilon c y \cdot d^2 + 2 \cdot \varepsilon y \cdot fy \cdot (As \cdot d + A's \cdot d') + 2 \cdot \varepsilon y \cdot P2b \cdot d = 0.336 \text{ tonnef} \cdot m$

$$c \coloneqq \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 19.845 \text{ cm} \qquad \text{Profundidad del eje} \qquad m \coloneqq \min\left(\frac{\varepsilon cy \cdot (d - c)}{\varepsilon y}, c\right) = 13.392 \text{ cm}$$

- Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido: $\varepsilon's \coloneqq \varepsilon y \cdot \frac{(c-d')}{(d-c)} = 0.00089 \quad \text{if} \left(\varepsilon's < \varepsilon y, \text{``Ok''}, \text{``No cumple''}\right) = \text{``Ok''} \quad f's \coloneqq Es \cdot \varepsilon's = 1773.542 \quad \frac{kgf}{cm^2}$

- Luego, se define la resultante de tracción y compresión:
 - $Cc1 := 0.85 \ f'c \cdot (c-m) \cdot b = 34.554 \ tonnef$ $Cs := A's \cdot f's = 15.586 \ tonnef$ $Cc2 := 0.85 \cdot f'c \cdot \frac{m}{2} \cdot b = 35.858 \ tonnef$ $TAs := As \cdot fy = 36.91 \ tonnef$

- Por último, hallamos la curvatura cedente y momento cedente:

$$\phi y2b \coloneqq \frac{\varepsilon y}{d-c} = 0.00597 \frac{1}{m}$$

$$My2b \coloneqq Cc1 \cdot \left(ycp - \left(\frac{c-m}{2}\right)\right) + Cc2 \cdot \left(ycp - c + \frac{2}{3} \cdot m\right) + Cs \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 29.218 \text{ tonnef} \cdot m$$

- A.7.3. Analisis de flexión pura: P := 0 tonnef
- Hipótesis:
- & El concreto no ha alcanzado su agotamiento& Comportamiento lineal elástico del concreto

& El acero de refuerzo inferior a tracción está justo en la cedencia
& El acero de refuerzo superior a compresión no ha cedido
& Comportamiento elasto-plástico del acero.

- Estableciendo el equilibrio de fuerzas y la compatibilidad de deformaciones en la figura 9, se define una ecuación que permite obtener la profundidad del eje neutro:

$$\left(\frac{Ec \cdot b \cdot \varepsilon y}{2}\right) \cdot c^{2} + (A's \cdot Es \cdot \varepsilon y + As \cdot fy + P) \cdot c - (A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0 \qquad A \cdot c^{2} + B \cdot c + D = 0$$

$$A := \frac{Ec \cdot b \cdot \varepsilon y}{2} = 684.718 \frac{\text{tonnef}}{\text{m}} \qquad B := A's \cdot Es \cdot \varepsilon y + As \cdot fy + P = 73.821 \text{ tonnef}$$

$$D := -(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = -22.146 \text{ tonnef} \cdot m \qquad c := \frac{-B + \sqrt{B^{2} - 4 \cdot A \cdot D}}{2 \cdot A} = 13.384 \text{ cm}$$

- Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido

arepsilon'	$s \coloneqq \varepsilon y \cdot \frac{(c)}{d}$	$\frac{-d')}{l-c} = 0$	0.00042	$\mathbf{if}(\varepsilon's < \varepsilon y, \text{``Ok''}, \text{``No cumple''}) = \text{``Ok''} \qquad f's \coloneqq Es \cdot \varepsilon's = 846.166 \frac{kgf}{cm^2}$
- Tam	bien se veri	fica que	el concreto te	enga un comportamiento lineal elástico
fc	límite ≔ 0	$0.70 \cdot f'c$	=147 kgf	 Esfuerzo límite del comportamiento elástico del concreto
, in the second s			cm^2	
εα	$= \frac{\varepsilon y \cdot c}{d - c} =$	= 0.0006	8	$\mathbf{if}(\varepsilon c < \varepsilon c u, \text{"Ok"}, \text{"No cumple"}) = \text{"Ok"}$
	<i>u</i> - <i>c</i>		kaf	
fc	$= Ec \cdot \varepsilon c$	= 146.81	$\frac{mg}{cm^2}$	if(fc < fclimite, "Ok", "No cumple") = "Ok"
Luo	ro, so dofin	o lo rocul	tanta da traa	
- Lucş	$fc \cdot b \cdot fc \cdot b \cdot$	$\frac{c}{c} = 29.4$	174 tonnef	$Cs := A's \cdot f's = 7 \ 436 \ tonnef$ $TAs := As \cdot fu = 36 \ 91 \ tonnef$
	2		· - · · · · · · · · · · · · · · · · · ·	
- Por t	último, hall	amos la c	curvatura ced	lente y momento cedente: $ycp = 30 \ cm$
ϕ_{i}	$yfp \coloneqq \frac{\varepsilon y}{d}$	-=0.00	$505 \frac{1}{m}$	
	<i>u</i> –		()	
M	$yfp \coloneqq Cc$	$\cdot ycp - \cdot $	$\left \frac{c}{3}\right + Cs \cdot (y)$	ycp - d') + TAs • $(d - ycp) = 18.614$ tonnef • m
A.8. I	hagrama d	ie intera	ccion (Carga	a axiai - iviomento) en condición cedente y ultima
Р	My	Ρ	Mu	
Po	0	Po	0	
P1a	Mu1a	P1a	Mu1a	P (tonnef)
P1b	Mu1b	P1b	Mu1b	
Pb	Mb	Pb	Mb	400-
P2a	Mu2a	P2a	Mu2a	350+
P2b	Mu2b	P2b	Mu2b	200-
0	Mufn	0	Mufn	300-
To	0	To	ni aj p	250-
10	0	10	0	200-
				150-
				100-
				50-
			ŀ	
				v 4 8 12 10 20 24 28 32 36 40 44 −50 −
				-100-
				My (tonnef.m) My (tonnef.m)
A.9. I	Diagrama d	le Carga	axial - Curv	vatura en condición cedente y última
P	ϕu	P	ϕy	
Po	0	Po	0	
P1a	$\phi u 1 a$	P1a	$\phi u 1 a$	
D11	4.1L	D1L	4.1L	
P10	$\varphi u 1 b$	P10	$\varphi u 1 \sigma$	
Pb	ϕb	Pb	ϕb	
P2a	$\phi u2a$	P2a	$\phi y2a$	
P2b	$\phi u 2 b$	P2b	$\phi y 2 b$	
0	dufn	0	dufn	

	P (tonnef)					
	400-						
	360-						
	320-						
	280-						
	240-						
	120-						
	80-						
	40-						
	0.005).01 0.015 0.0	02 0.025 0.03	0.035 0.04 0.	045 0.05		
		ϕy	$\left(\frac{1}{m}\right) \phi u \left(\frac{1}{m}\right)$	-)			
5 DIAGRAMA MOM	ΕΝΤΟ - ΡΟΤΛΟΙΌΝ	Usando las tak	alas ASCE (11-13)	_			
A. Primer piso: C1	1-30*60 P-M2-M3	1P	Lcol := 3.35 m	,			
A.1. Caso de estud	lio: Panális	s:=130 tonn	ef				
$My130 \coloneqq 40.564$	tonnef · m	¢	$by130 = 0.009 - \frac{1}{7}$				
- Primera columna:	$\frac{Panálisis}{b \cdot h \cdot f'c} = 0.$	344		Entrar en la	primera columna		
- Segunda columna	$: dbe := \frac{3}{8} in = 0$.953 cm	$Abe \coloneqq \frac{\pi \cdot dbe}{4}$	-=0.713 cm ²	Diámetro y área de para estribo	l acero	
los estribos pres	sentan 2 ramas:	$Av \coloneqq 2 \cdot Abe = 2$	$1.425 \ m{cm}^2$	$sep \coloneqq 10 \ cm$	Separación entre es confinada	stribos en la	zona
$Vs \coloneqq \frac{Av \cdot fy \cdot}{sep}$	<u>d</u> =32920.152 kg	f ρ:=-	$\frac{Av}{b \cdot sep} = 0.005$	Entrar en la	segunda columna		
- Tercera columna:	$Vactuante := -\frac{2}{2}$	$2 \cdot My 130 = 24$.217 tonnef				
Vactuanto		Lcol					
$\frac{\sqrt{actuante}}{b \cdot d \cdot \sqrt{f'c}}$	$xcal \coloneqq -$	$\frac{24.217}{55.\sqrt{210.10}}$	$- \cdot 1.1926 = 3.82$	Entrar en la	tercera columna		
	Confor.", "No conf	[for."] = "Confe	or." if $\left(Vs > \frac{3}{4}\right)$	•Vactuante, "C	onfor." , "No confo	$(\mathbf{r}, \mathbf{r}) = \mathbf{Cor}$	nfor."
			a1	b1 $c1$			
≥0.6 ≥0.0	006 ≤	3 (0.25)	0.010	0.010 0.0	0.003	0.009	0.010
20.6 20.0	2	6 (0.5)	0.008	0.008 0.0	0.003	0.007	0.008
$x1 \coloneqq 3$ $x2 \coloneqq 6$	x cal = 3.82		$a1 \coloneqq 0.010$ $a2 \coloneqq 0.008$	b1 := 0.010 b2 := 0.008	c1 = 0.0 c2 = 0.0		
at := (a	$(2-a1) \cdot \frac{(xcal-x)}{(x2-x1)}$	$\frac{1}{1} + a1 = 0.009$) bt ::	$= (b2 - b1) \cdot \frac{(xca)}{(x2)}$	$\left(\frac{ul-x1}{2-x1}\right) + b1 = 0.00$	19	
	$\left(2-c1 ight)\cdotrac{\left(xcal-x1 ight)}{\left(x2-x1 ight)}$	$\frac{)}{}+c1=0$					
*Rotación de ceden	ncia:	$Ic \coloneqq \frac{b \cdot h^3}{12}$	$= 0.0054 \ m^4$	$\theta y 130 \coloneqq \frac{Lcol \cdot N}{6 \cdot Ec}$	$\frac{My130}{c \cdot Ic} = 0.001929$	48 rad	
*Rotación y momen	nto último:						
$\theta u 130 \coloneqq \theta y 130$	$0 + at = 0.011 \ rad$	$Mu130 \coloneqq M$	$y_{130} + \frac{0.05 \cdot Ee}{2}$	$\frac{c \cdot Ic \cdot 0.7 \cdot (\theta u 13)}{m}$	$\frac{0-\theta y_{130})}{=} = 44.44$	8 tonnef •	m
*Rotación y momen	nto residual:	$\theta r 130 \coloneqq \theta y$	130 + bt = 0.011	rad Mr13	$0 \coloneqq My 130 \cdot ct = 0$	$kgf \cdot m$	
*Relación entre mo	omento último y cede	ente: $\frac{Mu130}{My130}$	= 1.096				

*Criterios d	te aceptaciór	1:					a1	b1	c1
≥0.6	≥0.006		≤3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010
0.6	≥0.006		≥6 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008
$x1 \coloneqq 3$		x cal = 3.82		a1 := 0.003	b1 := 0.009		c1 := 0.010		
$x_2 := 6$				a2 = 0.003	b2 := 0.007		c2 = 0.008		
$IO := (a_2 - a_3)$	(xcal)	$\frac{l-x1}{1-x1} + a1 = a1$	= 0.003	LS := (h	(xcal)	-x1)	+b1 = 0.008		
10 - (02	(x2)	-x1)	- 0.000	10(0	$(x_2 - (x_2 - $	-x1)	1 01 - 0.000		
$CP \coloneqq (c2 -$	$-c1) \cdot \frac{(xcat)}{(x2)}$	$\frac{l-x1)}{-x1)} + c1 =$	= 0.009						
A.2. Caso o	de estudio:	Panálisis	s≔85 tonne ,	f	1				
$My85 \coloneqq 35$	5.055 tonn	ef•m		$\phi y 85 \coloneqq 0.007$ -	<u> </u>				
		Danálisia			116				
- Primera ce	olumna: -	$\frac{Punalisis}{h \cdot h \cdot f'c} =$	0.225		Entrar e	n la pi	rimera columna		
		3		π.	dhe^2				
- Segunda c	columna: d	$dbe \coloneqq \frac{b}{8}$ in =	= 0.953 <i>cm</i>	$Abe \coloneqq \frac{n+d}{4}$	$\frac{100}{4} = 0.713 c$	m^2	Diámetro y área para estribo	del acero	
10	ibos messori	m 7 mm	$A_{21} = 2$ A_1	$a = 1.425 \text{ sm}^2$	aom 10	2	Somore side	actribas 1	
ios estri	ioos presenta	m ∠ ramas:	$Av \coloneqq 2 \cdot Abc$	e = 1.425 <i>cm</i> ⁻	sep := 10 cn	r.	separación entre zona confinada	estribos en la	L
Vs := -	$Av \cdot fy \cdot d$	32920 152 k	af o	$a := \frac{Av}{1} = 0.00$	5 Entrar e	n la se	ounda columna		
, 3	sep	54040.104 N	9] P	$b \cdot sep$			Banaa commina		
- Tercera co	olumna:	Vactuante :=	$2 \cdot My85 =$	20.928 tonnef					
			Lcol	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Vactu	ante	rcal ·	20.928	1 1926 – 3 5	301 Entrar	n la te	rcera columna		
	·	cout ·		1110_0 010					
$b \cdot d \cdot \gamma$ if (sep)	$\sqrt{f'c} \le \frac{d}{3}, $ "Conf	0.30• for.", "No co	$(0.55 \cdot \sqrt{210} \cdot \sqrt{210})$	• 10 Confor." if $\begin{pmatrix} v \\ v \end{pmatrix}$	$Vs > \frac{3}{4} \cdot Vactua$	nte,"	Confor.", "No	$\operatorname{confor."} =$	"Confor
$b \cdot d \cdot \gamma$ $\mathbf{if}\left(sep\right)$ 50.1	$\sqrt{f'c} \le \frac{d}{3}, \text{``Conf} \ge 0.006$	0.30• for.", "No co	$0.55 \cdot \sqrt{210} \cdot \text{mform."} = \text{``}$ $\leq 3 (0.25)$	• 10 Confor." if $\begin{pmatrix} V \\ a_1 \\ 0.032 \end{pmatrix}$	$Vs > \frac{3}{4} \cdot Vactual$ b1 0.060	c1	Confor.", "No 0.005	$\operatorname{confor."} = 0.045$	"Confor 0.06
$b \cdot d \cdot \gamma$ if(sep) (0.1)	$\sqrt{f'c} \le \frac{d}{3}, \text{``Conf} \ge 0.006 \le 0.006$	0.30• for.", "No co	$0.55 \cdot \sqrt{210} \cdot$ nform.") = " ≤3 (0.25) ≥6 (0.5)	• 10 Confor." if $\begin{pmatrix} V \\ a1 \\ 0.032 \\ 0.025 \end{pmatrix}$	$Vs > \frac{3}{4} \cdot Vactual$ b1 0.060 0.060	ente , " c1 0.2 0.2	Confor.", "No 0.005 0.005	$\left(\begin{array}{c} \text{confor.}^{"}\right) = \\ 0.045 \\ 0.045 \end{array}\right)$	"Confor 0.06 0.06
$b \cdot d \cdot y$ $if \left(sep\right)$ 30.1 $x1 := 3$	$\sqrt{f'c} \le rac{d}{3}, \text{``Conf} \ge 0.006 \ge 0.006} xcal$	0.30• for.", "No co !=3.301	$0.55 \cdot \sqrt{210} \cdot \\ \text{nform."} = "$ $\leq 3 (0.25) \\ \geq 6 (0.5)$	• 10 Confor." if $\begin{pmatrix} V \\ 0.032 \\ 0.025 \\ a1 := 0.032 \end{pmatrix}$	$7s > \frac{3}{4} \cdot Vactual$ $b1\\0.060\\0.060\\b1 :=$	unte , " c1 0.2 0.2	Confor.", "No 0.005 0.005 $c1 := 0.2$	$\left(\text{confor.}^{"} \right) = 0.045$ 0.045	"Confor 0.06 0.06
$b \cdot d \cdot y$ $if \left(sep\right)$ 30.1 $x1 := 3$ $x2 := 6$	$\sqrt{f'c} \le rac{d}{3}, \text{``Conf} \ge 0.006 \ge 0.006 xcal}$	$0.30 \cdot$ for.", "No co l = 3.301	$0.55 \cdot \sqrt{210} \cdot 1000$ nform.") = "1000 $\leq 3 (0.25)$ $\geq 6 (0.5)$ r(1)	• 10 Confor." if $\begin{pmatrix} V \\ & a1 \\ 0.032 \\ & 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025	$Vs > \frac{3}{4} \cdot Vactua$ $b1$ 0.060 $b1 :=$ $b2 :=$ $(rcal$	cnte, " c1 0.2 0.06 0.06 -x1	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2	$\left(\begin{array}{c} \text{confor.}^{"}\right) = \\ 0.045 \\ 0.045 \end{array}\right)$	"Confor 0.06 0.06
$b \cdot d \cdot y$ $if \left(sep\right)$ 30.1 $x1 := 3$ $x2 := 6$	$\sqrt{f'c} \le rac{d}{3}, \text{"Conf} \ge 0.006$ ≥ 0.006 x call at := (a2 - c)	$0.30 \cdot$ for.", "No co $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$	$0.55 \cdot \sqrt{210} \cdot \text{nform.''} = \text{``}$ $\leq 3 (0.25) \\ \geq 6 (0.5) \\ \hline \frac{x1)}{c1} + a1 = 0$	• 10 Confor." if $\begin{pmatrix} v \\ a_1 \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2)	$Vs > \frac{3}{4} \cdot Vactual$ $b1$ 0.060 0.060 $b1 :=$ $b2 :=$ $2 - b1) \cdot \frac{(xcal - b)}{(xcal - b)}$	$c_{0.2}^{1}$ $c_{0.2}^{1}$ 0.06 $c_{0.06}^{1}$ c_{-x1}^{1}	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 + b1 = 0.06	$\left(\text{confor.}^{"} \right) = 0.045$ 0.045	"Confor 0.06 0.06
$b \cdot d \cdot \gamma$ $if \left(sep\right)$ 30.1 0.1 $x1 := 3$ $x2 := 6$	$\sqrt{f'c} \le \frac{d}{3}, \text{"Conf} \ge 0.006 \ge 0.006 \\ \ge 0.006 \\ x cal \\ at := (a2 - c) \\ ct := (c2 - c) \\ ct := (c2$	$0.30 \cdot$ for.", "No co $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$	$0.55 \cdot \sqrt{210} \cdot \frac{1}{2000} = \frac{1}{2000} = \frac{1}{2000} = \frac{1}{2000} = \frac{1}{200000000000000000000000000000000000$	• 10 Confor." if $\begin{pmatrix} v \\ a_1 \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2	$Vs > \frac{3}{4} \cdot Vactual$ $b1$ 0.060 0.060 $b1 :=$ $b2 :=$ $2-b1) \cdot \frac{(xcal-1)}{(x2-1)}$	cnte, " c1 0.2 0.06 c0.06 c0.06 $cruth{crutherar}$ $rutherar}$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 + b1 = 0.06	$\left(\text{confor.}^{"} \right) = $	"Confor 0.06 0.06
$b \cdot d \cdot y$ if (sep) (0.1) $x1 := 3$ $x2 := 6$	$\sqrt{f'c} \le \frac{d}{3}$, "Conf ≥ 0.006 ≥ 0.006 xcal at := (a2 - c) ct := (c2 - c)	$0.30 \cdot$ for.", "No co $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - x)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) \\ \geq 6 (0.5) \\ \hline x1) \\ r + a1 = 0. \\ \hline x1) \\ r + c1 = 0. \\ \hline b \cdot b \cdot dt = 0. \\ \hline a = 0. \\ \hline b \cdot dt =$	• 10 Confor." if $\begin{pmatrix} V \\ & a_1 \\ 0.032 \\ & 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 h ³ 0.005 t 4	$V_{s} > \frac{3}{4} \cdot Vactual$ b_{1} 0.060 0.060 $b_{1} :=$ $b_{2} :=$ $2-b_{1} \cdot \frac{(xca)}{(x2-b_{1})}$	$c_{0.2}^{c_{1}}$ 0.2 0.06 0.06 -x1) x1)	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 b1 = 0.06 b1 = 0.06	confor.") = 0.045 0.045	"Confor 0.06
$b \cdot d \cdot y$ if (sep) 50.1 50.1 $x1 := 3$ $x2 := 6$ *Rotación o	$\sqrt{f'c} \le \frac{d}{3}$, "Confi ≥ 0.006 ≥ 0.006 xcal at := (a2 - c) ct := (c2 - c) de cedencia:	$0.30 \cdot $ for.", "No co $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) \cdot 26 (0.5) \cdot 10^{-1} + a1 = 0 \cdot 10^{-1} \cdot 11 + c1 = 0 \cdot 10^{-1} \cdot 11 + c1 = 0 \cdot 10^{-1} \cdot 11 + c1 = 0 \cdot 11 \cdot 11 + c1$	• 10 Confor." if $\begin{pmatrix} v \\ a_1 \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^3}{2} = 0.0054 m^4$	$Vs > \frac{3}{4} \cdot Vacture$ $b1$ 0.060 0.060 $b1 :=$ $b2 :=$	cnte, " $c1$ 0.2 0.06 0.06 $cnte + 1$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 b1 = 0.06 $\frac{85}{c} = 0.0016674$	confor.") = 0.045 0.045	"Confor 0.06
$b \cdot d \cdot y$ if (sep) 30.1 0.1 $x1 := 3$ $x2 := 6$ *Rotación o *Rotación y	$\sqrt{f'c}$ $\leq \frac{d}{3}, \text{"Conf}$ ≥ 0.006 ≥ 0.006 xcal at := (a2 - c) ct := (c2 - c) de cedencia: y momento ú	$0.30 \cdot 60.30 \cdot 100 \text{ for.}, \text{ "No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - x)}{(x^2 - x)^2}$ $a1) \cdot \frac{(xcal - x)}{(x^2 - x)^2}$	$0.55 \cdot \sqrt{210} \cdot \frac{1}{2000}$ $(1.55 \cdot \sqrt{210} - \frac{1}{2000}) = \frac{1}{2000}$ $(2.5) = \frac{2}{2000} = \frac{2}{2000} + \frac{2}{2000} = \frac{2}{2000}$ $(2.5) = \frac{2}{2000} = \frac{2}{2000} + \frac{2}{2000} + \frac{2}{2000} = \frac{2}{2000} + \frac{2}{2000} + \frac{2}{2000} + \frac{2}{2000} = \frac{2}{2000} + \frac{2}{200} + \frac{2}{2000} + \frac{2}{2$	• 10 Confor." if $\begin{pmatrix} V \\ & a_1 \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $h^3 = 0.0054 m^4$	$Vs > \frac{3}{4} \cdot Vactual$ $b1$ 0.060 $b1 :=$ $b2 :=$ $2 - b1) \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b^2}{6}$	c_{1} c_{2} 0.2 0.06 0.06 -x1) x1) $bl \cdot My$ $-Ec \cdot Ic$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 b1 = 0.06 $\frac{85}{c} = 0.0016674$	confor.") = 0.045 0.045	"Confor 0.06 0.06
$b \cdot d \cdot \gamma$ $if \left(sep\right)$ 30.1 0.1 $x1 := 3$ $x2 := 6$ *Rotación of sector of the	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confi ≥ 0.006 ≥ 0.006 xcal at := (a2 - c) ct := (c2 - c) de cedencia: y momento ú $= \theta y 85 + at =$	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - x)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - x)}{(x2 - x)}$ $ltimo:$ $= 0.033 \text{ rad}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) \\ \geq 6 (0.5)$ $\frac{x11}{x11} + a1 = 0.5 \\ \frac{x11}{x11} + c1 = 0.5 \\ Ic := \frac{b \cdot 1}{x11} \\ Mu85 := 0.5 $	• 10 Confor." if $\begin{pmatrix} V \\ & a_1 \\ 0.032 \\ & 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^3}{2} = 0.0054 m^4$ = $My85 + \frac{0.05 \cdot E}{2}$	$Vs > \frac{3}{4} \cdot Vacture$ $b1$ 0.060 0.060 $b1 :=$ $b2 :=$ $b2 :=$ $c - b1 \cdot \frac{(xcal - b)}{(x^2 - b^2)} \cdot \frac{(xcal - b)}{(x^2 - b^2)}$ $\theta y = \frac{b^2}{6}$ $b^2 := \frac{b^2}{6}$ $b^2 := \frac{b^2}{6}$ $b^2 := \frac{b^2}{6}$	$cnte, "$ $c1$ 0.2 0.06 0.06 $-x1)$ $x1)$ $bl \cdot My$ $bl \cdot My$ $bl \cdot My$ $bl - My$ $bl - My$ $bl - My$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 b1 = 0.06 $\frac{85}{c} = 0.0016674$ $\frac{985}{c} = 47.913$ t	confor.") = 0.045 0.045 43 rad connef.m	"Confor 0.06
$b \cdot d \cdot y$ if $(sep$ 50.1 0.1 $x1 := 3$ $x2 := 6$ *Rotación o *Rotación y $\theta u85 :=$	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Conf ≥ 0.006 ≥ 0.006 xcal at := (a2 - a) ct := (c2 - a) de cedencia: y momento ú $= \theta y 85 + at = a$	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - x)}{(x2 - x)}$ $a1) \cdot \frac{(xcal - x)}{(x2 - x)}$ $a1) \cdot \frac{(xcal - x)}{(x2 - x)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) \\ \geq 6 (0.5)$ $\frac{x1)}{x1} + a1 = 0.$ $\frac{x1)}{1} + c1 = 0.$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 :=$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $h^{3} = 0.0054 m^{4}$ = My85 + $\frac{0.05 \cdot E}{b^{2}}$	$Vs > \frac{3}{4} \cdot Vactuu$ $b1$ 0.060 0.060 $b1 :=$ $b2 :=$ $2-b1) \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b2}{(xcal - b2)}$ $\theta y = \frac{b2}{(xcal - b2)}$	cnte, " $c1$ 0.2 0.06 0.06 $cno6$	$\frac{0.005}{0.005}$ $c1 := 0.2$ $c2 := 0.2$ $b1 = 0.06$ $\frac{85}{c} = 0.0016674$ $\frac{85}{c} = 47.913 t$	confor.") = 0.045 0.045 13 rad	"Confor 0.06
$b \cdot d \cdot y$ if (sep) 50.1 50.1 $x1 := 3$ $x2 := 6$ *Rotación y $\theta u85 :=$ *Rotación y	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confination of the second	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $cal = 1 \cdot \frac{(xcal - a)}{(x2 - x)}$ $cal = 1 \cdot \frac{(xcal - a)}{(x2 - x)}$ $cal = 0.033 \text{ rad}$ $cal = 1 \cdot \frac{(xcal - a)}{(x2 - x)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) \\ \geq 6 (0.5)$ $\frac{x1)}{c1} + a1 = 0.$ $\frac{x1)}{1} + c1 = 0.$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ $a_{1} := 0.032$ $a_{2} := 0.025$ $a_{3} := 0.025$ $a_{3} := b_{2} = 0.0054 \text{ m}^{4}$ $a_{2} = My85 + \frac{0.05 \cdot E}{2}$ $\theta y85 + bt = 0.062$	$Vs > \frac{3}{4} \cdot Vactuus$ $b1 \\ 0.060 \\ 0.060$ $b1 := b2 := b2 := c^{2} - b1 \cdot \frac{(xcal - b^{2})}{(x^{2} - b^{2})} \cdot \frac{(xcal - b^{2})}{(x^{2} - b^{2})} \cdot \frac{b^{2}}{(x^{2} - b^{2})}$ $\theta y = b^{2} \cdot \frac{b^{2}}{(x^{2} - b^{2})} \cdot \frac{b^{2}}{(x^{2} - b^{2})} \cdot \frac{b^{2}}{(x^{2} - b^{2})}$ $\theta y = b^{2} \cdot \frac{b^{2}}{(x^{2} - b^{2})} \cdot \frac{b^{2}}{(x^{2} - b^{2})} \cdot \frac{b^{2}}{(x^{2} - b^{2})}$ $\theta y = b^{2} \cdot \frac{b^{2}}{(x^{2} - b^{2})} \cdot b$	$unte, "$ $c1$ 0.2 0.06 0.06 $-x1)$ $x1)$ $bl \cdot My$ $Ec \cdot Id$ $85 - \theta y$ $5 := M$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 b1 = 0.06 $\frac{85}{c} = 0.0016674$ $\frac{y85}{c} = 47.913 t$	confor.") = 0.045 0.045 13 rad connef.m kgf.m	"Confor 0.06
$b \cdot d \cdot y$ if (sep) 50.1 50.1 50.1 $x1 := 3$ $x2 := 6$ *Rotación y $\theta u85 :=$ *Rotación y *Rotación y *Rotación y	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confi ≥ 0.006 ≥ 0.006 xcal at := (a2 - a) ct := (c2 - a) de cedencia: $y momento in = \theta y 85 + at =y momento results + at =$	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - x)}{(x2 - x)} \cdot \frac{(xcal - x)}{(x2 - x)}$ $cltimo:$ $= 0.033 \text{ rad}$ $esidual:$ $to último y centering (xentering)$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = 6 (0.5)$ $\frac{x1)}{>6} + a1 = 0.2$ $\frac{x1)}{1} + c1 = 0.2$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \qquad Mu2$	• 10 Confor." if $\begin{pmatrix} v \\ a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $h^{3} = 0.0054 m^{4}$ = $My85 + \frac{0.05 \cdot E}{9}$ $\theta y85 + bt = 0.062$	$Vs > \frac{3}{4} \cdot Vactual$ $b1$ 0.060 $b1 :=$ $b2 :=$ $2-b1) \cdot \frac{(xcal - b)}{(xcal - b)}$ $\theta y = \frac{b^2}{6}$ $\theta y = \frac{b^2}{6}$ $\frac{b^2}{6}$	$ente, "$ $c1$ 0.2 0.06 0.06 $c.10$ $x1$ $d \cdot My$ $ec \cdot Id$ $85 - \theta y$ $5 := M$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 + b1 = 0.06 $\frac{85}{c} = 0.0016674$ $\frac{y85}{c} = 47.913 t$	confor.") = 0.045 0.045 43 rad connef.m kgf.m	"Confor 0.06
$b \cdot d \cdot \gamma$ if(sep) 50.1 50.1 x1 := 3 x2 := 6 *Rotación of $\theta u85 :=$ *Rotación y $\theta u85 :=$ *Rotación y racción y	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confination of the second	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) = 0.033 \text{ rad}$ $c3) = 0.033 \text{ rad}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = (0.5)$ $\geq 6 (0.5)$ $\frac{x1)}{x1} + a1 = 0.5$ $\frac{x1)}{1} + c1 = 0.5$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \frac{Mu}{My8}$	• 10 Confor." if $\begin{pmatrix} v \\ & a_{1} \\ 0.032 \\ & 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^{3}}{2} = 0.0054 \ m^{4}$ = My85 + $\frac{0.05 \cdot E}{9985 + bt} = 0.062$ $\frac{85}{85} = 1.367$	$Vs > \frac{3}{4} \cdot Vactuus$ $b1 \\ 0.060 \\ 0.060$ $b1 := \\ b2 := \\ c-b1 \end{pmatrix} \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b^2}{(xcal - b2)}$	$unte, "$ $c1$ 0.2 0.06 0.06 $-x1)$ $x1)$ $bl \cdot My$ $Ec \cdot Id$ $85 - \theta y$ $5 := M$	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 b1 = 0.06 $\frac{85}{c} = 0.0016674$ $\frac{y85}{c} = 47.913 t$ $y85 \cdot ct = 7011$ IO	confor.") = 0.045 0.045 0.045	"Confor 0.06 0.06
$b \cdot d \cdot \gamma$ if (sep) 30.1 30.1 x1 := 3 x2 := 6 *Rotación of *Rotación y $\theta u 85 :=$ *Rotación y *Relación of *Criterios of ≤ 0.1	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confination of the second	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)} \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c3) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c3) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c4) \cdot \frac{(xcal - a)}{(x2 - a)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = 6 (0.5)$ $\frac{x1)}{\geq 6} + a1 = 0.2$ $\frac{x1)}{1} + c1 = 0.2$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \frac{Mu}{My8}$ $\leq 3 (0.25)$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ $a_{1} = 0.032 \\ a_{2} = 0.025 \\ .031 bt := (b_{2} + b_{2} + b_{3} + b$	$Vs > \frac{3}{4} \cdot Vactual$ $b1$ 0.060 $b1 :=$ $b2 :=$ $2-b1) \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b2}{6}$ $\theta y = \frac{b2}{6}$ $C \cdot Ic \cdot 0.7 \cdot (\theta u = b2)$ m rad $Mr = b2$	$ente, "$ $c1$ 0.2 0.06 0.06 $c.10$ $x1)$ $d \cdot My$ $b \cdot C \cdot Id$ $35 - \theta y$ $5 := M$	$Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 + b1 = 0.06 \frac{85}{c} = 0.0016674 \frac{y85}{c} = 47.913 t y85 \cdot ct = 7011 IO a1$	$confor.") = $ 0.045 0.045 0.045 $13 rad$ $connef \cdot m$ $kgf \cdot m$ LS 0.044	"Confor 0.06 0.06
$b \cdot d \cdot y$ if (sep) 50.1 50.1 x1 := 3 x2 := 6 *Rotación y $\theta u 85 :=$ *Rotación y *Relación e *Criterios c ≤ 0.1 ≤ 0.1	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confination of the second	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $ltimo:$ $= 0.033 \text{ rad}$ $esidual:$ $to último y cealliche (xal - a)$ $esidual:$ $a1 \cdot a(xal - a)$ $a2 - a(xal - a)$ $a3 \cdot a(xal - a)$ $a3 \cdot a(xal - a)$ $a3 \cdot a(xal - a)$ $a4 \cdot a(xal - a)$ $a5 \cdot a(xa - a)$ $a5 \cdot a$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = (0.5)$ $\geq 6 (0.5)$ $\frac{x1)}{x1} + a1 = 0.5$ $\frac{x1)}{1} + c1 = 0.5$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \frac{Mu8}{My8}$ $\leq 3 (0.25)$ $\geq 6 (0.5)$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ & 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^{3}}{2} = 0.0054 m^{4}$ = My85 + $\frac{0.05 \cdot E}{0.053}$ $\theta y85 + bt = 0.062$ $\frac{85}{85} = 1.367$ 0.032	$Vs > \frac{3}{4} \cdot Vactuus$ $b1 \\ 0.060 \\ 0.060$ $b1 := b2 := b2 := c + c + c + c + c + c + c + c + c + c $	ente, " c1 0.2 0.06 0.06 -x1) x1) $bl \cdot My$ $Ec \cdot Id$ $85 - \theta y$ 5 := M	$c \text{Confor.}, \text{"No}$ 0.005 0.005 $c1 := 0.2$ $c2 := 0.2$ $b1 = 0.06$ $\frac{85}{c} = 0.0016674$ $\frac{y85}{c} = 47.913 t$ $iy85 \cdot ct = 7011$ IO $a1$ O $a1$	$confor.") = $ 0.045 0.045 0.045 $13 rad$ $connef \cdot m$ $kgf \cdot m$ LS 05 0.04	"Confor 0.06 0.06
$b \cdot d \cdot y$ if (sep) 50.1 50.1 50.1 $x1 := 3$ $x2 := 6$ *Rotación of *Rotación of #Rotación of *Rotación of *Rotación of *Rotación of *Criterios of <0.1 <0.1	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Configure 4 ≥ 0.006 ≥ 0.006 xcal $at := (a2 - a)ct := (c2 - a)de cedencia:y momento ut = \theta y 85 + at =y momento results + at =y momento results + at =\Rightarrow 0.00\geq 0.00$	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)} \cdot \frac{(xcal - a)}{(x2 - a)} \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)} \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)} \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)} \cdot \frac{(xcal - a)}{(x2 - a)}$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $a2) \cdot \frac{(xcal - a)}{(x2 - a)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = (0.5)$ $\geq 6 (0.5)$ $\frac{x1)}{(21)} + a1 = 0.$ $\frac{x1)}{(21)} + c1 = 0.$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \qquad \frac{Mu3}{My3}$ $\leq 3 (0.25) = (0.5)$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^{3}}{2} = 0.0054 m^{4}$ = $My85 + \frac{0.05 \cdot E}{9}$ $\theta y85 + bt = 0.062$ $\frac{85}{85} = 1.367$ 0.032 0.025	$Vs > \frac{3}{4} \cdot Vactuut$ $b1 \\ 0.060 \\ 0.060 \\ b1 := \\ b2 := \\ 2-b1 \end{pmatrix} \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b2}{6} + \frac$	$unte, "$ $c1$ 0.2 0.06 0.06 $c.10$ $x1)$ r $bl \cdot My$ bl	$c^{2} \text{Confor.}, "\text{No}$ 0.005 0.005 $c1 := 0.2$ $c2 := 0.2$ $+ b1 = 0.06$ $\frac{85}{c} = 0.0016674$ $\frac{y85}{c} = 47.913 t$ $iy85 \cdot ct = 7011$ IO $a1$ 0.2 0.00	confor.") = 0.045 0.045 0.045 13 rad connef.m kgf.m LS 05 0.04	"Confor 0.06 0.06
$b \cdot d \cdot y$ if (sep) 50.1 50.1 50.1 $x1 := 3$ $x2 := 6$ *Rotación y $\theta u85 :=$ *Rotación y *Relación y *Relación y *Criterios c ≤ 0.1 ≤ 0.1 $x1 := 3$	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confination of the second	$0.30 \cdot$ for.", "No co $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c2) = 0.033 \ rad$ $c3) = 0.033 \ rad$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) \\\geq 6 (0.5)$ $\frac{x11}{c11} + a1 = 0.1$ $\frac{x11}{c11} + c1 = 0.1$ $Ic := \frac{b \cdot 1}{c11}$ $Mu85 := 0$ $dente: \frac{Mu3}{My3} \\\leq 3 (0.25) \\\geq 6 (0.5)$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ $a_{1} := 0.032 \\ a_{2} := 0.025 \\ .031 bt := (b_{2} + b_{2} + b_{3} +$	$Vs > \frac{3}{4} \cdot Vactuu$ $b1$ 0.060 0.060 $b1 :=$ $b2 :=$ $2-b1) \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b2}{6}$ $\frac{b2}{6}$ b	ente, " c1 0.2 0.06 0.06 c.10 c.2 c	Confor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 + b1 = 0.06 $\frac{85}{c} = 0.0016674$ $\frac{985}{c} = 47.913 t$ $\frac{10}{0.2}$ 0.00 c1 := 0.060	confor.") = 0.045 0.045 0.045 0.045 $13 \ rad$ $connef \cdot m$ $kgf \cdot m$ LS 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.045	"Confor 0.06 0.06
$b \cdot d \cdot y$ $if \left(sep\right)$ (50.1) $x1 := 3$ $x2 := 6$ $*Rotación y$ $\theta u85 :=$ $*Rotación y$ $Relación y$ (50.1) (50.1) (50.1) $x1 := 3$ $x2 := 6$	$\sqrt{f'c}$ $\leq \frac{d}{3}$, "Confi ≥ 0.006 ≥ 0.006 xcal at := (a2 - c) ct := (c2 - c) de cedencia: y momento ú $= \theta y 85 + at =$ y momento r entre momental $aceptaciór\geq 0.00xcal = 3ace ace ace ace ace ace ace ace ace ace $	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = (0.5)$ $\geq 6 (0.5)$ $\frac{x1)}{x1} + a1 = 0.5$ $\frac{x1)}{1} + c1 = 0.5$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \frac{Mu}{My8}$ $\leq 3 (0.25) = 26 (0.5)$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^{3}}{2} = 0.0054 m^{4}$ = My85 + $\frac{0.05 \cdot E}{0.053}$ $\theta y85 + bt = 0.062$ $\frac{85}{85} = 1.367$ 0.032 0.025 a1 := 0.005 a2 := 0.005 a2 := 0.005	$Vs > \frac{3}{4} \cdot Vactuut$ $b1$ 0.060 0.060 $b1 :=$ $2-b1) \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b2}{(xcal - b2)}$	xnte, " c1 0.2 0.06 0.06 -x1) x1) $bl \cdot My$ $bl \cdot My$ $bl \cdot My$ $bl c \cdot Hy$ $bl c \cdot$	$cconfor.", "No 0.005 0.005 c1 := 0.2 c2 := 0.2 + b1 = 0.06 \frac{85}{c} = 0.0016674 \frac{985}{c} = 47.913 t y85 \cdot ct = 7011 IO a1 0.2 0.00 c1 := 0.060 c2 := 0.060$	confor.") = 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.04 0.045 0.04 0.045 0.04	"Confor 0.06 0.06
$b \cdot d \cdot y$ if (sep) (50.1) $x1 := 3$ $x2 := 6$ *Rotación y $\theta u85 :=$ *Rotación y $\theta u85 :=$ *Rotación y (x + R) = 3 $x + R) = 3$ $x + R$ $x +$	$\sqrt{f'c} \le \frac{d}{3}, \text{"Conf} \le \frac{0}{3}, \text{"Conf} \ge 0.006$ ≥ 0.006 $x cal$ $at := (a2 - a)$ $ct := (c2 - a)$ $de \ cedencia:$ $y \ momento \ u$ $= \theta y 85 + at :$ $y \ momento \ u$ $= \theta y 85 + at :$ $y \ momento \ u$ $= 0.0$ ≥ 0.00 $x cal = 3$ $= -a1) \cdot \frac{(x cal)}{(x^2)}$	$0.30 \cdot 0.30 \cdot \text{for.}, \text{"No co}$ $l = 3.301$ $a1) \cdot \frac{(xcal - a)}{(x2 - a)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c1) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c2) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c3) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c3) \cdot \frac{(xcal - a)}{(x2 - x)}$ $c3) \cdot \frac{(xcal - a)}{(x2 - x)}$	$0.55 \cdot \sqrt{210} \cdot nform." = "$ $\leq 3 (0.25) = (0.5)$ $\geq 6 (0.5)$ $\frac{x1)}{(c1)} + a1 = 0.$ $\frac{x1)}{(c1)} + c1 = 0.$ $Ic := \frac{b \cdot 1}{1}$ $Mu85 := 0$ $dente: \qquad \frac{Mu3}{My3}$ $\leq 3 (0.25) = 0.005$	• 10 Confor." if $\begin{pmatrix} V \\ & a_{1} \\ 0.032 \\ 0.025 \end{pmatrix}$ a1 := 0.032 a2 := 0.025 .031 bt := (b2) 2 $\frac{h^{3}}{2} = 0.0054 m^{4}$ = My85 + $\frac{0.05 \cdot E}{9985 + bt} = 0.062$ $\frac{85}{85} = 1.367$ 0.032 0.032 0.025 a1 := 0.005 a2 := 0.005 LS := (b)	$Vs > \frac{3}{4} \cdot Vactual$ $b1 \\ 0.060 \\ 0.060 \\ b1 := \\ b2 := \\ 2-b1 \end{pmatrix} \cdot \frac{(xcal - b2)}{(xcal - b2)}$ $\theta y = \frac{b2}{(xcal - b2)}$	$unte, "$ $c1$ 0.2 0.06 0.06 $c.10$ $x1)$ $bl \cdot My$ $bl \cdot M$	$c^{2} \text{Confor.}, "\text{No}$ 0.005 0.005 $c^{1} := 0.2$ $c^{2} := 0.2$ $b^{1} = 0.06$ $\frac{85}{c} = 0.0016674$ $\frac{985}{c} = 47.913 t$ $i^{2}y85 \cdot ct = 7011$ IO a_{1} 0.2 0.00 $c^{1} := 0.060$ $c^{2} := 0.060$ $+ b^{1} = 0.045$	$confor.") = 0.045 0.045 0.045 13 rad connef \cdot mkgf \cdot mLS05 0.04$	"Confor 0.06 0.06

A.3. Case	o de estudio:	Panálisis	≔35 tonnef		1				
$My35 \coloneqq$	26.207 ton i	nef·m		$\phi y35 \coloneqq 0.006$	$\frac{1}{m}$				
D.		Panálisis	0.000						
- Primera	columna:	$b \cdot h \cdot f'c$	0.093		En	itrar en la p	orimera columna		
- Segunda	a columna:	$dbe \coloneqq \frac{3}{8}$ in =	0.953 cm	$Abe \coloneqq \frac{\pi}{2}$	$\frac{dbe^2}{4} = 0.7$	713 cm ²	Diámetro y área d para estribo	el acero	
los es	tribos presen	tan 2 ramas:	$Av \coloneqq 2 \cdot Abe \equiv$	= 1.425 <i>cm</i> ²	$sep \coloneqq$	10 ст	Separación entre e zona confinada	estribos en la	
$Vs \coloneqq$	$\frac{Av \cdot fy \cdot d}{sep}$:	= 32920.152 k	gf ρ :=	$=\frac{Av}{b \cdot sep}=0.00$	05 En	itrar en la s	egunda columna		
- Tercera	columna:	$Vactuante \coloneqq$	$\frac{2 \cdot My35}{I} = 15$	5.646 tonnef					
Vact	uante		15.646						
b•d	$\sqrt{f'c}$	$xcal \coloneqq$	$0.55 \cdot \sqrt{210 \cdot 1}$	$- \cdot 1.1926 = 2$.468 En	itrar en la t	ercera columna		
if (set	$p \leq \frac{d}{3}$, "Con	nfor.", "No co	$\operatorname{nfor."} = \operatorname{"Con}$	for." if	$Vs > \frac{3}{4} \cdot V$	actuante ,	"Confor." , "No c	onfor.") = "	Confor."
				a1	b1	c1			
≤0.1	≥0.006		≤3 (0.25)	0.032	0.060	0 0.2	0.005	0.045	0.060
				at := 0.032	bt := 0	.06	ct := 0.2		
*Dotació	a de cedencia		$b \cdot h^{2}$	$-0.0054 m^4$	Au25 .	$_Lcol \cdot M_{\tilde{l}}$	$y^{35} = 0.00124657$	mad	
Rotacioi	i de cedencia		12 12	0.0054 <i>m</i>	0935.	$6 \cdot Ec \cdot I$	lc = 0.00124037	700	
*Rotación	n y momento	último:		0.05		(0.05.0			
$\theta u 35$	$= \theta y 35 + a t$	$t = 0.033 \ rad$	Mu35 := N	$Ay_{35} + \frac{0.05 \cdot 1}{2}$	Ec•1c•0.7	$\cdot (\theta u 35 - \theta$	(3935) = 39.354 to	mnef•m	
*Rotaciór	n y momento	residual:	$ heta r 35 \coloneqq heta y$	35 + bt = 0.06	1 rad	$Mr35 \coloneqq N$	$Ay35 \cdot ct = 5241.4$	kgf∙m	
*Relaciór	n entre mome	ento último v ceo	lente: Mu35	-=1.502					
* Criterio	s de aceptaci	ón	My35	- 1.502					
-0.1			-2 (0.25)	0.022	0.077		IO	LS	CP
≤0.1	≥0.006		≤3 (0.25)	0.032	0.060) 0.2	0.005	0.045	0.060
						IO := 0.00	5 $LS \coloneqq 0.04$	45 CF	'≔0.06
A.4. Case	de estudio:	Panál	<i>ısıs</i> ≔ 0 tonne	dufn = 0.005	1				
IVI g j p - 1	10.014 0010	iej • m		$\varphi g j p = 0.005$	m				
- Primera	columna:	$\frac{Panálisis}{b \cdot h \cdot f'c} = 0$	0		En	itrar en la p	orimera columna		
- Segunda	a columna:	$dbe \coloneqq \frac{3}{8}$ in =	0.953 cm	$Abe \coloneqq \frac{\pi \cdot}{2}$	$\frac{dbe^2}{4} = 0.7$	713 cm ²	Diámetro y area d estribo	el acero para	
los es	tribos presen	tan 2 ramas	$Av \coloneqq 2 \cdot Abe \equiv$	= 1.425 <i>cm</i> ²	$sep \coloneqq$	10 ст	Separación entre e la zona confinada	estribos en	
$Vs \coloneqq$	$\frac{Av \cdot fy \cdot d}{sep}$:	= 32920.152 k	gf ρ :=	$=\frac{Av}{b \cdot sep}=0.00$	05 En	itrar en la s	egunda columna		
- Tercera	columna:	Vactuante :=	$\frac{2 \cdot Myfp}{Lcol} = 11$	1.113 tonnef					
Vact	uante	$xcal \coloneqq$	11.113	$- \cdot 1.1926 = 1$.753 En	itrar en la t	ercera columna		
$b \cdot d$	$\cdot \sqrt{f'c}$	0.30•	$0.55 \cdot \sqrt{210 \cdot 1}$	0	2				
$\mathbf{if}\left(se_{j}\right)$	$p \leq \frac{a}{3}$, "Con	nfor.", "No co	$\operatorname{nfor."} = \operatorname{"Con"}$	for." $\mathbf{if}(Vs)$	$>\frac{3}{4}$ ·Vacto	uante, "Co	onfor.", "No confe	$\operatorname{or.}" = \operatorname{"Cor}$	nfor."
≤0.1	≥0.006		≤3 (0.25)	$a1 \\ 0.032$	0.060	$c1 \\ 0.2$	0.005	0.045	0.060
				at 0.00		ht. 0.00	-1.00		
				at := 0.032	2	ot := 0.06	$ct \coloneqq 0.2$		

*Rotación	de cedencia:	$Ic \coloneqq \frac{b \cdot h^3}{12}$	$= 0.0054 \ m^4$	$\theta y f p \coloneqq \frac{Lco}{6}$	$\frac{bl \cdot Myfp}{\cdot Ec \cdot Ic} =$	= 0.0008854 r a	ıd	
*Rotación θufp:=	y momento último: = $\theta y f p + at = 0.033$ rad	$Mufpa \coloneqq M$	$fyfp + \frac{0.05 \cdot Ec}{2}$	$c \cdot Ic \cdot 0.7 \cdot (\theta)$ m	$ufp - \theta yfp$) = 31.761 to	nnef∙m	
*Rotación	y momento residual:	$ heta rfp \coloneqq heta yfp$	$b + bt = 0.061 \ r$	ad Mrf	p := Myfp	• $ct = 3722.79$	6 kgf • m	
*Relación *Criterios	entre momento último y c de aceptación	edente: $\frac{Mufpa}{Myfp}$	= 1.706					
≤0.1	≥0.006	≤3 (0.25)	0.032	0.060	0.2	<i>IO</i> 0.005	$LS_{0.045}$	CP 0.060
IO := 0.00	LS := 0.045	$CP \coloneqq 0.0$	06					

- Para hallar los diagramas de momento - rotación de las columnas del segundo y tercer nivel, se usarán las longitudes de cada nivel y los procedimientos desde el item 5 en adelante.

- Para hallar el modelo inelástico de la columna C1-30x60 para el eje local 2-2, se usarán los mismos procedimientos usados para el eje local 3-3.

- Estableciendo equilibrio de fuerzas en la figura 2, se tiene: $TA's := A's \cdot fy = 33.253$ tonnef Tracción en el acero superior
 - $TAs := As \cdot fy = 33.253$ tonnef

% El concreto alcanzó su agotamiento

 $To \coloneqq -TA's - TAs = -66.505$ tonnef

% El acero de refuerzo inferior a tracción esta justo en cedencia

Tracción en el acero superior Tracción en el acero inferior

Fuerza axial a tracción pura

A.3. Falla balanceada

& El acero de refuerzo superior a compresión ya cedió& Comportamiento elasto-plástico del acero

- De acuerdo a la relación de deformaciones de la figura 3, se obtiene directamente la profundidad del eje neutro: $cb := \frac{\varepsilon cu \cdot d}{\varepsilon cu + \varepsilon y} = 32.353$ cm Profundidad del eje neutro para la falla balanceada
- Se verifica que el acero a compresión ya cedió: $\varepsilon's \coloneqq \varepsilon cu \cdot \frac{(cb-d')}{cb} = 0.0025 \quad \text{if} (\varepsilon's > \varepsilon y, \text{``En cedencia''}, \text{``No cedencia''}) = \text{``En cedencia''}$

- Fuerzas resultantes:

Hipótesis:

 $CA's := A's \cdot fy = 33.253$ tonnef $Cc := 0.85 \cdot f'c \cdot \beta_1 \cdot cb \cdot b = 147.263$ tonnef $TAs := As \cdot fy = 33.253$ tonnef - Obtenemos la fuerza axial, momento y curvatura para la condición balanceada:

$$Pb := Cc + CA's - TAs = 147.263 \text{ tonnef}$$

$$Mb := Cc \cdot \left(ycp - \frac{\beta_1 \cdot cb}{2}\right) + CA's \cdot (ycp - d') + TAs \cdot (d - ycp) = 40.556 \text{ tonnef} \cdot m$$
Fuerza axial para falla balanceada
$$\phi b := \frac{\varepsilon cu}{cb} = 0.009 \frac{1}{m}$$
Curvatura para falla balanceada

A.4. Falla controlada por compresión: Po > P1 > Pb Po = 384.979 tonnef Pb = 147.263 tonnef A.4.1. Análisis para la carga axial: $P1a := Pb + \frac{(Po - Pb)}{2} = 266.121$ tonnef

& El concreto alcanzó su agotamiento
& El acero de refuerzo superior a compresión ya cedió
& El acero de refuerzo inferior a tracción no ha cedido
& Comportamiento elasto-plástico del acero.

- Estableciendo el equilibrio de fuerzas y la relación de deformaciones en la figura 4, se obtiene la ecuación para determinar la profundidad del eje neutro de la sección:

$$\begin{array}{l} P1a = 0.85 \ f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fs \\ (0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot fy + As \cdot Es \cdot \varepsilon cu - P1a) \cdot c - As \cdot Es \cdot \varepsilon cu \cdot d = 0 \\ A := 0.85 \cdot f'c \cdot \beta_1 \cdot b = 455.175 \ \hline \begin{array}{c} tonnef \\ m \end{array} \\ B := A's \cdot fy + As \cdot Es \cdot \varepsilon cu - P1a = -185.364 \ tonnef \\ m \end{array} \\ D := -As \cdot Es \cdot \varepsilon cu \cdot d = -26.127 \ tonnef \cdot m \end{array} \\ c := \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 51.804 \ cm \end{array}$$
 Profundidad del eje neutro

- Se verifica que el acero superior a compresion ya cedió y el acero inferior a tracción no ha cedido:

$\varepsilon's \coloneqq \frac{\varepsilon cu \cdot (c-d')}{c} = 0.00271 \qquad \text{if} \left(\varepsilon's > \varepsilon y, \text{``ok''}, \text{``No cumple''}\right) = \text{``}_{c}$	ok" $f's \coloneqq fy = 4200 \frac{kgf}{cm^2}$
$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d-c)}{c} = 0.00019$ if $(\varepsilon s < \varepsilon y, \text{``ok''}, \text{``No cumple''}) = \text{``c}$	bk" $fs \coloneqq Es \cdot \varepsilon s = 370.168 \frac{kgf}{cm^2}$
- Fuerzas resultantes:	
$CA's := A's \cdot f's = 33.253$ tonnef $Cc := 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 235.799$ to	connef $TAs := As \cdot fs = 2.931$ tonnef
- Curvatura última y momento último : $ycp = 30 \text{ cm}$ $\phi u1a := \frac{\varepsilon cu}{c} = 0.0058 \frac{1}{m}$	
$Mu1a \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CAs \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 27.87 \text{ f}$	tonnef • m
A.4.2. Analisis para la carga axial: $P1b := Pb + \frac{(Po - Pb)}{2} = 206.692$ to	mpef
Hipótesis:	
% El senerate elsenzé su esstamiente	
El acero de refuerzo inferior a tracción no ha cedido & Comp	ortamiento elasto-plastico del acero.
- Estableciendo el equilibrio de fuerzas y la relación de deformaciones en la figura profundidad del eje neutro de la sección:	4, se obtiene la ecuación para determinar la
$P1b = 0.85 \ f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fs$	
$(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot fy + As \cdot Es \cdot \varepsilon cu - P1b) \cdot c - As \cdot Es \cdot \varepsilon cu \cdot cu$	$d = 0 \qquad A \cdot c^{2} + B \cdot c + D = 0$
$A \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot b = 455.175 \frac{tonnef}{B} \qquad B \coloneqq A's \cdot fy + As \cdot Es \cdot b$	$\epsilon cu - P1b = -125.935$ tonnef
<i>m</i>	
$B_{\rm e}$ As Eq. and $B_{\rm e}$ 107 terms for $-B + \sqrt{B^2 - 4 \cdot A}$	$1 \cdot D$ (1. 100 and Deefer did data is north
$D \coloneqq -As \cdot Es \cdot \varepsilon cu \cdot a = -26.127 \text{ tonnef} \cdot m \qquad c \coloneqq -26.427 \text{ tonnef} \cdot m \qquad c \coloneqq -26.423 \text{ tonnef} \cdot m \qquad c \coloneqq -26.423 \text{ tonnef} \cdot m \qquad c \coloneqq -26.423 \text{ tonnef} \cdot m \qquad c \coloneqq -26.433 \text{ tonnef} \cdot m \qquad c = -26.433 tonnef$	= 41.499 <i>cm</i> Profundidad del eje neutro
- Se verifica que el acero superior a compresion ya cedió y el acero inferior a tracci	ión no ha cedido:
$\varepsilon's \coloneqq \frac{\varepsilon c u \cdot (c-u)}{1} = 0.00264$ if $(\varepsilon's > \varepsilon y, \text{``ok''}, \text{``No cumple''}) = "v$	$f's := fy = 4200 \frac{kg}{2}$
	cm²
$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d-c)}{c} = 0.00098$ if $(\varepsilon s < \varepsilon y, \text{``ok''}, \text{``No cumple''}) = \text{``c}$	bk" $fs \coloneqq Es \cdot \epsilon s = 1951.986 \frac{kgf}{cm^2}$
- Fuerzas resultantes	
$CA_{i} = A_{i} = A_{$	
$CAs := As \cdot j s = 33.253$ torthe j $Cc := 0.85 \cdot j c \cdot \beta_1 \cdot c \cdot b = 188.893$ to	$IAS := AS \cdot JS = 15.454 \text{ tonne} J$
- Curvatura ultima y momento ultimo : $ycp = 30 \ cm$	
$\phi u1b \coloneqq 0.00723 \frac{1}{m}$	
$Mu1b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CAs \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 35.529$	tonnef • m
A.5. Estudio de falla controlada por tracción $P2 < Pb$ $Pb = 147.263$ t	tonnef
A 51 Análisis para carga avial: $P2a = \frac{2}{r}$, $Pb = 08.175$ tonnef	ioninoj
A.5.1. Analisis para carga axiai. $12a = -70 = 98.175$ tormej	
 & El concreto alcanzó su agotamiento & El acero de ret 	tuerzo superior a compresión ya cedió
& El acero de refuerzo inferior a tracción ya cedió & Comportamien	nto elasto-plástico del acero.
<u>d''</u>	E.P.
$\begin{array}{c} \mathbf{r} \\ $	$r_s = f_{\nu}$ $\leftarrow C_{A\nu_s}$
y_{CP} A'_s c $\varepsilon'_s > \varepsilon_y$ a	
$M_{a} \left(\begin{array}{c} P_{2} \\ P_{2} \end{array} \right) h d \left(\begin{array}{c} P_{2} \end{array} \right) h d \left(\begin{array}{c} P_{2} \end{array} \right) h d \left(\begin{array}{c} $	Eigung 5
	Figura 5.
	f T
$\epsilon_s > \epsilon_y$	· y /
b Deformación Esfuerzo	
Deformation Estuerzo	
- Estableciendo el equilibrio de fuerzas en la figura 5, se define directamente la pro la carga axial aplicada:	ofundidad del eje neutro de la sección, en función
- Estableciendo el equilibrio de fuerzas en la figura 5, se define directamente la pro la carga axial aplicada: $P2a + fu \cdot (As - As)$	ofundidad del eje neutro de la sección, en función
- Estableciendo el equilibrio de fuerzas en la figura 5, se define directamente la pro la carga axial aplicada: $P2a = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fy$ $c := \frac{P2a + fy \cdot (As - As \cdot fy)}{0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fy}$	ofundidad del eje neutro de la sección, en función $\frac{4's)}{2} = 21.569 \ cm$ Profundidad del eje neutro

					CTIL	
- Fuerzas resultantes						
- Fuelzas resultantes: $CA'_{e} = A'_{e} = f'_{e} = 22.952$ town	of $C_{\alpha} = 0.95$ f'	β , c , $b = 00.1^{\circ}$	5 toppof	TAR-ARE	° – 33 0≍3 1	onnef
$CAS = AS \cdot JS = 35.235$ total	$e_j C c := 0.85 \cdot j \cdot c \cdot j$	$0_1 \cdot c \cdot 0 = 98.17$	s tonnej	1 AS := AS • JS	s−əə.∡əə t	onnej
εcu εcu εcu 1	ycp = 30 cm					
$\varphi u 2a \coloneqq $						
$Mu2a \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + C$	$CA's \cdot (ycp - d') + TAs$	$s \cdot (d - ycp) = 3$	7.079 tonnef • 1	n		
(-)	Ph					
A.5.2. Análisis para carga axial	: $P2b := \frac{10}{3} = 49.$	088 tonnef				
Hipótesis:	J					
% El concreto alcanzó su agot	amiento	% El a	cero de refuerzo s	uperior a com	presión no c	edió
% El acero de refuerzo inferio	r a tracción ya cedió	% Con	portamiento elast	o-plástico del	acero.	
- Estableciendo el equilibrio de fuerza	as en la figura 5, se defi	ine la profundida	d del eje neutro e	n función de l	a carga aplic	ada:
$P2b = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot$	f's - Asfu		5			
$(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot E)$	$s \cdot \varepsilon c u - A s \cdot f u - P 2 h$	(A'_{s}, E_{s})	$\cdot \varepsilon c u \cdot d' = 0$	$Ac^2 \rightarrow$	-Bc + D = 0	
$A := 0.85 \cdot f'c \cdot \beta_{1} \cdot b - 455 \cdot 175$	tonnef	$A'_{s} \cdot E_{s} \cdot E_{s}$	$A_{s} \cdot f_{u} = P_{s}$	= -34 836 #	onnef	
π.= 0.00 · j ε · μ ₁ · υ = 400.110	m			51.000 0	Cronocy	
$D = -A' \circ F \circ \circ cou d' = -9.97$	5 tonnef.m	$-B + \sqrt{B^2}$	$-4 \cdot A \cdot D$ _ 12 ()01 om D.	ofundidad d	el eie nor
$D = -A s \cdot E s \cdot c c u \cdot u = -2.57$	s tonnej•m c	2 • 4	1 - 12.0	01 Cm 11	ofundidad do	er eje neu
So your factor al come of a second se	in no ho codide 1	ro o trocción -	adió			
- Se verifica que el acero a compresió (c-d')	on no ha cedido y el ace	ro a tracción ya				kgf
$\varepsilon's \coloneqq \varepsilon c u \cdot \frac{c}{c} = 0.00175$	if $(\varepsilon' s < \varepsilon y, "Ok$	a", "No cumple	m) = "Ok" j	$f's \coloneqq Es \cdot \varepsilon's$	= 3500.289	$\frac{cm^2}{cm^2}$
(d-c)					kaf	
$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(u-\varepsilon)}{c} = 0.01075$	$\mathbf{if}(\varepsilon s > \varepsilon y, \mathrm{``Ok})$	", "No cumple	") = "Ok" ;	$fs \coloneqq fy = 420$	$0 \frac{m^2}{m^2}$	
					Cire	
- Fuerzas resultantes						
$CA's \coloneqq A's \cdot f's \equiv 27.713$ tonne	$ef Cc \coloneqq 0.85 \cdot f'c \cdot$	$\beta_1 \cdot c \cdot b = 54.62$	7 tonnef	$\Gamma As \coloneqq As \cdot fs$	3 = 33.253 t	onnef
- Curvatura última y momento último	ycp = 30 cm	s				
$\phi u2b \coloneqq \frac{\varepsilon cu}{\omega} = 0.025 \frac{1}{\omega}$						
$c \qquad m$						
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{c}\right) + C$	$CA's \cdot (ycp - d') + TAs$	$s \cdot (d - ycp) = 2$	8.843 tonnef • 1	n		
A.6. Flexión pura: $P \coloneqq 0$ tonne	f					
Hipótesis:						
% El concreto alcanzó su agotami	ento	% El acero de	refuerzo superior	a compresión	no ha cedido	
& El acero de refuerzo inferior a t	racción va cedió	& Comportam	iento elasto-plásti	co del acero	na courde	
			ento erasto-prasti			
	<u>d'</u>					
+ + + _		$\varepsilon_c = \varepsilon_{cu}$	$f_c = 0.85 f_c$	C.		
J Y _{CP}	A'_s c'_s	$s < \varepsilon_{y} + /$		CC		
M b d		¥:	•_ = ===	Eim	6	
				rigura	. 0.	
	A _s			т		
		$\varepsilon_s > \varepsilon_{\gamma}$	- iy	·		
	b					

$(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot Es \cdot \varepsilon cu - As \cdot fu)$	$(\mathbf{r}) \cdot \mathbf{c} - A' \mathbf{s} \cdot E \mathbf{s} \cdot \varepsilon c \mathbf{u} \cdot d' = 0$ A	$\cdot c^2 + Bc + D = 0$
tonnef	,	
$A \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot b = 455.175$	$B \coloneqq A's \cdot Es \cdot \varepsilon cu - As \cdot fy = 14.25$	1 tonnef
n n		

 $c \coloneqq \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot 4} = 5.826 \text{ cm}$ Profundidad del eje neutro

- Se verifica que el acero superior a compresión no ha cedido y que el acero inferior a tracción ya cedió $\varepsilon's := \varepsilon cu \cdot \frac{(c-d')}{c} = 0.00043$ if $(\varepsilon's < \varepsilon y, "Ok", "No cumple") = "Ok"$ $f's := Es \cdot \varepsilon's = 850.606 \frac{kgf}{cm^2}$

$$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d-c)}{c} = 0.02532 \qquad \text{if} \left(\varepsilon s > \varepsilon y, \text{``Ok''}, \text{``No cumple''} \right) = \text{``Ok''} \qquad fs \coloneqq fy = 4200 \frac{kgf}{cm^2}$$

- Fuerzas resultantes:
- $CA's \coloneqq A's \cdot f's = 6.735 \text{ tonnef} \qquad Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 26.518 \text{ tonnef} \qquad TAs \coloneqq As \cdot fs = 33.253 \text{ tonnef}$ $\text{Curvatura última y momento último :} \qquad ycp = 30 \text{ cm}$ $\phi ufp \coloneqq \frac{\varepsilon cu}{c} = 0.05149 \frac{1}{m}$

$$Mufp \coloneqq Cc \cdot \left(ycp - \beta_1 \cdot \frac{c}{2}\right) + CA's \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 17.296 \text{ tonnef} \cdot m$$

A.7. Falla en cedencia

- A.7.1. Análisis para la carga axial: P2a = 98.175 tonnef
 - Hipótesis:
 - % El concreto no ha alcanzado su agotamiento
 - % Comportamiento lineal elástico del concreto
- & El acero de refuerzo inferior a tracción está justo en la cedencia
 & El acero de refuerzo superior a compresión no ha cedido
 & Comportamiento elasto-plástico del acero.

- Estableciendo el equilibrio de fuerzas y la compatibilidad de deformaciones en la figura 7, se define una ecuación que permite obtener la profundidad del eje neutro: (E_{c}, h, s_{u})

$$\left(\frac{Ec \cdot b \cdot \varepsilon y}{2}\right) \cdot c^2 + \left(A's \cdot Es \cdot \varepsilon y + As \cdot fy + P2a\right) \cdot c - \left(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P2a \cdot d\right) = 0 \qquad A \cdot c^2 + B \cdot c + D = 0$$

$$A \coloneqq \frac{Ec \cdot v \cdot \varepsilon y}{2} = 684.718 \frac{\text{connef}}{\text{m}}$$
$$B \coloneqq A's \cdot Es \cdot \varepsilon y + As \cdot fy + P2a = 164.68 \text{ tonnef}$$

$$D \coloneqq -(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P2a \cdot d) = -73.948 \text{ tonnef} \cdot m \qquad c \coloneqq \frac{-B + \sqrt{B} - 4 \cdot A \cdot D}{2 \cdot A} = 22.969 \text{ cm}$$

- Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido: $\varepsilon's \coloneqq \varepsilon y \cdot \frac{(c-d')}{d-c} = 0.00118 \qquad \text{if} \left(\varepsilon's < \varepsilon y, \text{``No cumple''}\right) = \text{``Ok''} \qquad f's \coloneqq Es \cdot \varepsilon's = 2356.082 \frac{kgf}{cm^2}$

- Tambien se verifica que el concreto tenga un comportamiento lineal elástico: $f_{1}f_{1}f_{2}f_{2}f_{3}$

$$fclimite := 0.70 \cdot f'c = 147 \frac{33}{cm^2}$$
 Esfuerzo límite del comportamiento elástico del concreto

$$\varepsilon c \coloneqq \frac{\varepsilon g \cdot c}{d - c} = 0.00151 \qquad \text{if} \left(\varepsilon c < \varepsilon c u, \text{``Ok''}, \text{``No cumple''} \right) = \text{``Ok''}$$
$$f c \coloneqq E c \cdot \varepsilon c = 327.327 \frac{kgf}{cm^2} \qquad \text{if} \left(f c < f climite, \text{``Ok''}, \text{``No cumple''} \right) = \text{``No cumple''}$$

- Debido a que no cumple, se debe plantear que el concreto tenga un comportamiento no lineal. Se establece un modelo bilineal equivalente (elasto-plástico). Para ello, se define una deformación elástica del concreto de 0.0008

-Tambien se verifica que el concreto teng $fclímite \coloneqq 0.70 \cdot f'c = 147 \frac{kgf}{cm^2}$	a un comportamiento lineal elástico Esfuerzo límite del comportamiento elástico del concreto	
$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{d - c} = 0.00111$	$\mathbf{if}(\varepsilon c < \varepsilon cu, "Ok", "No cumple") = "Ok"$	

(elasto-plastico). Para ello, se define una deformación ela	ástica del concreto de 0.0008
 Estableciendo el equilibrio de fuerzas y la relación de d profundidad del eje neutro: 	leformaciones en la figura 8, se obtiene la ecuación para determinar la
$c^2 \cdot (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b)$	
$-c \cdot ((2 \cdot \varepsilon u + \varepsilon c u) \cdot (0.85 \cdot f' c \cdot b \cdot d) + 2 \cdot \varepsilon u \cdot f u \cdot d)$	$\cdot (As + A's) + 0.85 \cdot f'c \cdot b \cdot \epsilon cu \cdot d + 2 \cdot \epsilon u \cdot P2b)$
+ $0.85 \cdot f'c \cdot b \cdot \varepsilon cu \cdot d^2 + 2 \cdot \varepsilon u \cdot fu \cdot (As \cdot d + A')$	$(s, d') + 2 \cdot \varepsilon y \cdot P2b \cdot d = 0$ $A \cdot c^2 + B \cdot c + D = 0$
$A \coloneqq (2 \cdot \varepsilon_{\mathcal{U}} + \varepsilon_{\mathcal{C}\mathcal{U}}) \cdot (0.85 \cdot f'_{\mathcal{C}} \cdot b) = 2.678 \frac{tonney}{tonney}$	$\frac{f}{f}$
m	
$B \coloneqq -((2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b \cdot d) + 2 \cdot \varepsilon y \cdot f'$	$(a_{s}+a_{s})+0.85 \cdot f'c \cdot b \cdot \varepsilon cy \cdot d+2 \cdot \varepsilon y \cdot P2b) = -2.194$ tonnef
$D \coloneqq 0.85 \cdot f'c \cdot b \cdot \varepsilon cy \cdot d^2 + 2 \cdot \varepsilon y \cdot fy \cdot (As \cdot d + A)$	$A's \cdot d') + 2 \cdot \varepsilon u \cdot P2b \cdot d = 0.327$ tonnef $\cdot m$
$c \coloneqq \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 19.571 \text{ cm} \qquad \text{Pr}_{\text{no}}$	rofundidad del eje $m \coloneqq min\left(\frac{\varepsilon cy \cdot (d-c)}{\varepsilon y}, c\right) = 13.497 \ cm$
Al obtener la profundidad del sie neutro, se verifica que	e el acero superior a compresión no ha cedido:
$\varepsilon's \coloneqq \varepsilon y \cdot \frac{(c-d')}{(d-c)} = 0.00086 \qquad \text{if } (\varepsilon's < \varepsilon y, `$	"Ok", "No cumple") = "Ok" $f's \coloneqq Es \cdot \varepsilon's = 1727.328 \frac{kgf}{cm^2}$
- Luego, se define la resultante de tracción y compresión	
$Cc1 := 0.85 \ f'c \cdot (c-m) \cdot b = 32.527 \ tonnef$	$Cs := A's \cdot f's = 13.676$ tonnef
$Cc2 \coloneqq 0.85 \cdot f'c \cdot \frac{m}{2} \cdot b = 36.138 \text{ tonnef}$	$TAs := As \cdot fy = 33.253$ tonnef
2	
- Por último, hallamos la curvatura cedente y momento c	edente:
$\phi y2b \coloneqq \frac{\varepsilon y}{d-c} = 0.00593 \frac{1}{m}$	
$M_{u2h} = Cc1 \cdot \left(ucn - \left(c - m\right)\right) + Cc2 \cdot \left(ucn - c\right)$	$\binom{2}{2}$, m) + Ce, (ucn - d') + TAe, (d - ucn) - 27,523 tonnef. m
$(y_{20}) = (y_{20}) + (y_{20}) $	$\left(\frac{1}{3}\right)^{-1}$ $\left(\frac{1}{3}\right)$
A.7.3. Analisis de flexión pura $P := 0$ tonnef	
Hipótesis:	
Hipótesis: % El concreto no ha alcanzado su agotamiento	% El acero de refuerzo inferior a tracción está iusto en la cedencia
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto	 El acero de refuerzo inferior a tracción está justo en la cedencia El acero de refuerzo superior a compresión no ha cedido
Hipótesis: % El concreto no ha alcanzado su agotamiento % Comportamiento lineal elástico del concreto	 & El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto	 & El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto	 & El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto d'	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $c_c < c_{cu}$ $\int_{-\alpha'}^{-\alpha'} f_c \le 0.70 f_c$
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto d' y _{CP} A's c c'	% El acero de refuerzo inferior a tracción está justo en la cedencia % El acero de refuerzo superior a compresión no ha cedido % Comportamiento elasto-plástico del acero. $\varepsilon_c < \varepsilon_{cu}$ $\int d' f_c \le 0.70 f_c$ $r_s < \varepsilon_v$ $\int d' f_c \le 0.70 f_c$ r_s $C_C^{CA's}$
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto d' y_{CP} A'_s c c c	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $\epsilon_c < \epsilon_{cw}$ $\int \frac{d^2 f_c \le 0.70 P_c}{f_s}$ $C_c^C A's$ Figura 9.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $ \begin{array}{c} $	% El acero de refuerzo inferior a tracción está justo en la cedencia % El acero de refuerzo superior a compresión no ha cedido % Comportamiento elasto-plástico del acero. $\epsilon_c < \epsilon_{cw}$ $+ \int_{-d'}^{-d'} f_c \le 0.70 f_c$ $r_s < \epsilon_v$ f_s $C_c^{CA's}$ Figura 9.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ d \\ d$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $\epsilon_c < \epsilon_{cu}$ $\int_{1}^{-d'} f_c \le 0.70 f_c$ $r_s < \epsilon_y$ $f_s = c_c C_A$'s Figura 9.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ d \\ h \\ h$	% El acero de refuerzo inferior a tracción está justo en la cedencia % El acero de refuerzo superior a compresión no ha cedido % Comportamiento elasto-plástico del acero. $\varepsilon_c < \varepsilon_{cw}$ $f_c \leq 0.70 P_c$ $r_s < \varepsilon_y$ $f_s \leftarrow C_c A$'s Figura 9.
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ d \\ b \\ c \\ c \\ b \\ c \\ b \\ c \\ c \\ c \\ c$	% El acero de refuerzo inferior a tracción está justo en la cedencia % El acero de refuerzo superior a compresión no ha cedido % Comportamiento elasto-plástico del acero. $\varepsilon_c < \varepsilon_{cy}$ $f_c \le 0.70 f_c$ $\varepsilon_s < \varepsilon_y$ f_s f_s $C_c C_{A's}$ $F_s = \varepsilon_y$ f_y f_y T Deformación Esfuerzo
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ d \\ b \\ d \\ b \\ c \\ c$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $f_{e} < \varepsilon_{ev}$ $f_{e} < 0.70 P_{e}$ $f_{e} < \varepsilon_{v}$ $f_{e} < 0.70 P_{e}$ $f_{e} < 0.70 P_$
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto M $M = \begin{pmatrix} d' \\ y_{CP} \\ h \\ y_{CP} \\ y$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $\overbrace{e_{c} < \varepsilon_{cu}}^{c}$ $\overbrace{f_{c} < 0.70^{P_{c}}}^{f_{c}}$ $\overbrace{C_{c}}^{C}C_{A's}$ $\overbrace{e_{s} = \varepsilon_{y}}^{f_{s}}$ $\overbrace{f_{y} \rightarrow T}^{f_{s}}$ $\overbrace{C_{c}}^{C}C_{A's}$ Figura 9. Deformación Esfuerzo ad de deformaciones se define una ecuación que permite obtener la $-(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0$ $A \cdot c^{2} + B \cdot c + D =$
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ y_{CP} \\ h \\ y_{CP} \\ h \\ z \\ z$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $\frac{\epsilon_c < \epsilon_{cw}}{r_s < \epsilon_v} + \int_{-d'} \frac{d'}{r_c} \le 0.70r_c}{r_s}$ Figura 9. Figura 9. Deformación Esfuerzo ad de deformaciones se define una ecuación que permite obtener la $-(A's \cdot Es \cdot \epsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0$ $A \cdot c^2 + B \cdot c + D =$ $B := A's \cdot Es \cdot \epsilon y + As \cdot fy \cdot d + P \cdot d) = 0$
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ y_{CP} \\ h \\ y_{CP} \\ h \\ y_{CP} \\ y$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $c_c < c_{cw}$ $f'_c \le 0.70r_c$ $r_s < c_y$ f'_r $c'_f_c \le 0.70r_c$ $r_s < c_y$ f'_r $c'_c C_c A$'s Figura 9. Deformación Esfuerzo ad de deformaciones se define una ecuación que permite obtener la $-(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0$ $A \cdot c^2 + B \cdot c + D =$ $B := A's \cdot Es \cdot \varepsilon y + As \cdot fy + P = 66.505$ tonnef
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ y_{CP} \\ y_{CP} \\ h \\ h \\ h \\ y_{CP} \\ h \\ $	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $f_{s} < \varepsilon_{cv}$ $f_{c} < 0.70^{r_{c}}$ $f_{s} < \varepsilon_{c} < \varepsilon_{cu}$ $f_{c} < 0.70^{r_{c}}$ $f_{s} < \varepsilon_{c} < C_{A's}$ Figura 9. Deformación Esfuerzo ad de deformaciones se define una ecuación que permite obtener la $-(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0$ $A \cdot c^{2} + B \cdot c + D =$ $B := A's \cdot Es \cdot \varepsilon y + As \cdot fy + P = 66.505$ tonnef $D = A's \cdot Es \cdot \varepsilon y + As \cdot fy + P = 66.505$ tonnef
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ h \\ y_{CP} \\ h \\ y_{CP} \\ h \\ y_{CP} \\ y$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $\underbrace{\epsilon_c < \epsilon_{cu}}_{t_s < \epsilon_v} \xrightarrow{f'_{t_c} \leq 0.70^{p_c}}_{t_s < C_c} C_{A's}}_{Figura 9.}$ Figura 9. Deformación Esfuerzo ad de deformaciones se define una ecuación que permite obtener la $-(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0$ $A \cdot c^2 + B \cdot c + D =$ $B := A's \cdot Es \cdot \varepsilon y + As \cdot fy + P = 66.505 tonnef$.952 tonnef · m $c := \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 12.891 \text{ cm}$
Hipótesis: & El concreto no ha alcanzado su agotamiento & Comportamiento lineal elástico del concreto $M \begin{pmatrix} d' \\ y_{CP} \\ y_{C$	& El acero de refuerzo inferior a tracción está justo en la cedencia & El acero de refuerzo superior a compresión no ha cedido & Comportamiento elasto-plástico del acero. $\underbrace{\epsilon_c < \epsilon_w} \int_{t} \frac{d^d}{f_c} \leq 0.70^{p_c} \\ \underbrace{c_s < \epsilon_y} f_s f_s f_s \\ c_c C_c A's \\ Figura 9.$ Figura 9. Deformación Esfuerzo ad de deformaciones se define una ecuación que permite obtener la $-(A's \cdot Es \cdot \epsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0 \qquad A \cdot c^2 + B \cdot c + D =$ $B := A's \cdot Es \cdot \epsilon y + As \cdot fy + P = 66.505 tonnef$ 952 tonnef \cdot m $c := \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 12.891 \text{ cm}$

	P (tonnef)						
100							
360-							
320-	`						
280-	\backslash						
240-							
200-							
120-	\sim						
80-							
40-							
0 0	0.005 0.01 0.015 0.02 0.0	025 0.03 0.035	0.04 0.045 0).05 0.055	→		
	$\phi y \left(\frac{1}{m}\right)$	$- \end{pmatrix} \phi u \left(\frac{1}{m}\right)$					
5. DIAGRAMA MOMENTO -	ROTACIÓN (Usando las tal	blas ASCE 41-13)				
A. Primer piso: C2-30*60	_P-M2-M3_1P	Lcol := 3.	35 m				
A.1. Caso de estudio:	Panálisis = 130 tonnef	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1				
$My130 \coloneqq 38.772$ tonnef	• m q	$py130 \coloneqq 0.009 - 1$	m				
- Primera columna: $\frac{Par}{b}$	$\frac{n\acute{a}lisis}{h \cdot f'c} = 0.344$		Entrar en	la primer	a columna		
- Segunda columna: dbe	$:=\frac{3}{8}$ in = 0.953 cm	$Abe \coloneqq \frac{\boldsymbol{\pi} \cdot db}{4}$	$e^2 = 0.713$ cm	pa ² D	iámetro y áro ara estribo	ea del acero	
los estribos presentan 2	ramas $Av \coloneqq 2 \cdot Abe =$	1.425 <i>cm</i> ²	<i>sep</i> := 10 <i>cm</i>	So	eparación ent onfinada	tre estribos e	en la zona
$Vs \coloneqq \frac{Av \cdot fy \cdot d}{sep} = 329$	920.152 kgf ρ:=-	$\frac{Av}{b \cdot sep} = 0.005$	Entrar en	ı la segunda	a columna		
- Tercera columna: Vac	$ctuante \coloneqq \frac{2 \cdot My130}{Lcol} = 23$	3.147 tonnef					
<u>Vactuante</u> xca	l:=	$- \cdot 1.1926 = 3.65$	1 Entrar en	la tercera	columna		
$b \cdot d \cdot \sqrt{f'c}$	$0.30 \cdot 0.55 \cdot \sqrt{210 \cdot 10}$,	
$\mathbf{if}\left(sep \le \frac{d}{3}, \text{``Confor.}\right)$	", "No confor." $=$ "Confo	or." $\mathbf{if}\left(Vs\right)$	$> \frac{3}{4} \cdot Vactuar$	nte, "Conf	or.", "No co	$\operatorname{onfor.}" = "$	'Confor."
>0.6 >0.006	<3 (0.25)	a1	b1	c1	0.003	0.009	0.010
>0.6 >0.006	>6 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008
m1 - 2 mod - 4	2 651	0.010	$h_{1} = 0.010$	o1	0.0		
$x_1 = 5 \qquad x_{cut} = 0$ $x_2 = 6$	a2:-	- 0.010	$b_{1} = 0.010$ $b_{2} = 0.008$	c2:-	0.0		
at := (a2 - a1)	$\cdot \frac{(xcal-x1)}{a1} + a1 = 0.01$	bt := (b2 -	$-b1) \cdot \frac{(xcal - x)}{(xcal - x)}$	$\frac{x1}{x1} + b1 =$	= 0.01		
()	(x2 - x1)	X	(x2-x)	21)			
$ct \coloneqq (c2 - c1)$	$\frac{(xcal-x1)}{(x2-x1)} + c1 = 0$						
	$(x^2 - x^1)$		Lee	$M_{1}M_{2}$			
*Rotación de cedencia:	$Ic := \frac{0.4}{12}$	$=0.0054 \ m^4$	$\theta y 130 \coloneqq \frac{Dcc}{6}$	$\cdot Ec \cdot Ic$	= 0.001844	24 rad	
*Rotación y momento últin	10:	0.05 - 4	$E_{C} \cdot I_{C} \cdot 0.7 (A_{2})$	$130 - Au^{13}$	30)		
$\theta u 130 \coloneqq \theta y 130 + at =$	$= 0.011 \ rad \qquad Mu130 := N$	$4y_{130} + \frac{0.03 \cdot L}{100}$	<i>m</i>	100 – Vy1.	= 42.70	2 tonnef ∙	m
*Momento y rotación residu	ual: $\theta r 130 \coloneqq \theta y$	130 + bt = 0.011	rad M	$r130 \coloneqq M_3$	$y130 \cdot ct = 0$	kgf∙m	
*Relación entre momento ú	ltimo y cedente: $Mu130$	-= 1,101					
*Criterios de aceptación:	$\frac{1}{My130}$	- 1.101					

							IO	LS	CP
							a1	b1	c1
≥0.6	≥0.006		≤3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010
≥0.6	≥0.006		≥6 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008
$x1 \coloneqq 3$		x cal = 3.651		a1 := 0.003	b1 := 0.009	c1:	= 0.010		
$x2 \coloneqq 6$		(magl m1)		a2 := 0.003	b2 := 0.007	c2	= 0.008		
IO :=	$=(a2-a1)\cdot$ -	$\frac{(xcat - x1)}{(x2 - x1)} +$	a1 = 0.003	3 <i>LS</i> :=	$(b2-b1)\cdot \frac{(3)}{(b2-b1)}$	(x2-x1)	+b1 = 0.009		
CD	(-2 -1)	(xcal - x1)	-1 0.01						
CP:	$=(c_2-c_1)^{\bullet-1}$	(x2-x1) +	$c_1 = 0.01$						
A.2. Cas	o de estudio:	Panálisis	s≔85 ton	nef					
My85 :=	: 33.303 ton i	nef•m		$\phi y 85 \coloneqq 0.007$ –	1 n				
		Danálisia			16				
- Primera	a columna:	$\frac{Funantsis}{b \cdot h \cdot f'c} =$	0.225		Entrar	en la primo	era columna		
		3		π.d	he^2				
- Segund	la columna:	$dbe := \frac{6}{8}$ in =	= 0.953 cn	$Abe := \frac{n}{4}$	= 0.713 c	m² Diá	metro y área do a estribo	el acero	
1			4	41 1 107 2	10	puit	.,		
los e	stribos presen	tan 2 ramas	$Av \coloneqq 2 \cdot$	$Abe = 1.425 \ cm^{-2}$	sep := 10 c	m Sep con	aración entre e finada	estribos en la	zona
Ve-	$Av \cdot fy \cdot d$	- 22020 152 k	of	$a = \frac{Av}{-0.005}$	Entror	on la sogur	da columna		
V S :-	sep	– 32920.132 K	gj	$p = \frac{1}{b \cdot sep} = 0.005$	Elluar	en la segui			
- Tercera	columna:	Vactuante	$2 \cdot My 85$	-19 882 tonnef					
Tereera	i corannia.	v actaunite -	Lcol	- 15.002 tonnej					
Vac	tuante	rcal :	19.882	• 1 1926 – 3 1	36 Entrar	en la tercei	ra columna		
$b \cdot d$	$\sqrt{f'c}$	0.30 •	$0.55 \cdot \sqrt{2}$	10.10	50 Entrai		u corumnu		
≤0.1	≥0.006		≤3 (0.25)	a1 0.032	b1 0.060	$c1 \\ 0.2$	0.005	0.045	0.00
≤0.1	≥0.006		≥6 (0.5)	0.025	0.060	0.2	0.005	0.045	0.06
$x1 \coloneqq 3$		x cal = 3.136		a1 := 0.032	b1 := 0.06	c1 :	= 0.2		
$x2 \coloneqq 6$		(real	<i>m</i> 1)	a2 := 0.025	b2 := 0.06	c2:	= 0.2		
	$at \coloneqq (a2 -$	$(a1) \cdot \frac{(x - a)}{(x^2 - a)}$	$\frac{a_{1}}{a_{1}} + a_{1}$	= 0.032 b	$t \coloneqq (b2 - b1)$	$\frac{(x c u - x)}{(x 2 - x)}$	$\frac{1}{b} + b1 = 0.00$	6	
		(xcal - x)	(r_1)			(#2 #1	-)		
	$ct \coloneqq (c2 - c)$	$(c1) \cdot \frac{(x2-x)}{(x2-x)}$	$\frac{1}{1} + c1 =$	= 0.2					
***		ì	, T	$b \cdot h^3$	Lc	$ol \cdot My 85$	0.001 50 (1		
*Rotació	on de cedencia	1:	<i>Ic</i> :=	$= 0.0054 \ m^{-1}$	$\theta y 85 \coloneqq -6$	•Ec•Ic	= 0.0015841	rad	
*Potocić	n u momente	último							
- Kotacio	$5 - 4u^{85} + a^{10}$	u_{111110}	Mare	$5 = M_{21} \otimes 5 = 0.05 \cdot Ec$	$\cdot Ic \cdot 0.7 \cdot (\theta u$	$85 - \theta y 85$) -46210 to	nnof.m	
0000	$0 = 0 y_{0} 0 + u_{0}$	i – 0.033 ruu		5 = My85 +	m		40.319 <i>t</i> 0	nnej•m	
*Momen	nto y rotación	residual:	$\theta r 85$	$= \theta y 85 + bt = 0.062$	rad Mrt	$85 \coloneqq My 85$	$5 \cdot ct = 6660.6$	$kgf \cdot m$	
			I	Mu85					
*Relació	on entre mome	ento último y ce ,	dente:	= 1.391 My85			10	Ta	C D
*Criteric	os de aceptació	on:					10	LS	CP
≤0.1	≥0.006		≤3 (0.25)	0.032	0.060	0.2	$a1 \\ 0.005$	61 0.045	$c1 \\ 0.06$
≤0.1	≥0.006		≥6 (0.5)	0.025	0.060	0.2	0.005	0.045	0.06
$x^1 - 2$		real - 2 126		a1 = 0.005	b1 = 0.045	a1 •	- 0.060		
a1 0 m2 6		acui — 0.100		$a_{2} = 0.005$	$h_{2} = 0.043$	c1:	-0.060		
120	$-(a^2 - a^1)$	(xcal - x1)	a1 - 0.00	12 - 0.000	(xcal)	(-x1)	1 - 0.000		
10:-	- (u2 - u1) •-	$(x_2 - x_1)^+$	ar – 0.000	D = (02)	$(x_2)^{(x_2)}$	$-x1)$ $\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$	1 - 0.040		
CP.	$=(c_2-c_1)$	(xcal - x1)	c1 = 0.06						
CP :	$=(c2-c1)\cdot$	$\frac{(x - x^{-1})}{(x - x^{-1})} +$	c1 = 0.06						

A.3. Caso de estudio	: Panálisi	s = 35 tonne	f	1				
$My35 \coloneqq 24.476$ ton	nef·m		$\phi y35 := 0.006$	<u> </u>				
	Panálisis			111				
- Primera columna:	$\frac{1 \text{ analisis}}{b \cdot h \cdot f'c} =$	0.093		Entra	ar en la prim	era columna		
- Segunda columna:	$dbe \coloneqq \frac{3}{8}$ in =	=0.953 cm	$Abe \coloneqq \frac{\boldsymbol{\pi} \cdot dbe}{4}$	= 0.713 cm	n ² Diámet	rro y área del ac	ero para esti	ribo
los estribos preser $Av \cdot fu \cdot d$	ntan 2 ramas	$Av \coloneqq 2 \cdot Abc$	$e = 1.425 \ cm^2$	sep:=10 cm	Separa	ción entre estrib	oos en la zon	a confinada
$Vs \coloneqq \frac{110^{-1} J g^{-1}}{sep}$	= 32920.152	cgf ρ ≔ -	$\frac{110}{b \cdot sep} = 0.005$	Entra	ar en la segui	1da columna		
- Tercera columna:	Vactuante =	$=\frac{2 \cdot My35}{Lcol}=$	14.613 tonnef					
Vactuante	$xcal \coloneqq$	14.613		.305 Entra	ar en la terce	ra columna		
$b \cdot d \cdot \sqrt{f'c}$	0.30	$0.55 \cdot \sqrt{210}$	• 10					
$\operatorname{if}\left(\operatorname{sep}\leq \frac{d}{3}, \operatorname{``Co}\right)$	onfor.", "No co	ponfor." = "Co	onfor." if	$Vs > \frac{3}{4} \cdot Vac$	tuante, "Co	nfor." , "No co	$\operatorname{onfor.}^{"} = "$	Confor."
≤0.1 ≥0.000	5	≤3 (0.25)	a1 0.032	b 1 0.060	$\begin{array}{c} c1\\ 0.2 \end{array}$	0.005	0.045	0.060
at := 0.032	bt := 0.06	$ct \coloneqq 0.2$						
*Rotación de cedenci	a:	$Ic := \frac{b \cdot i}{1}$	$\frac{h^3}{2} = 0.0054 \ m^4$	$\theta y35 \coloneqq -$	$Lcol \cdot My35$ $6 \cdot Ec \cdot Ic$	=0.00116423	rad	
*Rotación v momente	último:							
$\theta u 35 \coloneqq \theta y 35 + a$	$t = 0.033 \ rad$	$Mu35 \coloneqq$	$=My35+\frac{0.05\cdot I}{2}$	$Ec \cdot Ic \cdot 0.7 \cdot ($ m	θu35 – θy35	$\frac{)}{}=37.623$ to	nnef•m	
*Momento y rotación	residual:	$\theta r35 \coloneqq \theta$	$\partial y35 + bt = 0.062$	l rad N	$[r35 \coloneqq My3]$	$5 \cdot ct = 4895.2$	kgf • m	
*Relación entre mom *Criterios de aceptaci	ento último y ce ón	edente: $\frac{Mu_s^2}{My_s^2}$	$\frac{35}{35} = 1.537$					
≤0.1 ≥0.006	5	≤3 (0.25)	0.032	0.060	0.2	<i>IO</i> 0.005	<i>LS</i> 0.045	CP 0.060
$IO \coloneqq 0.005$	$LS \coloneqq 0.045$	$CP \coloneqq 0.06$						
B.2. Caso de estudio	Panalisi	s≔0 tonnef		1				
Myfp = 16.816	tonnef∙m		$\phi y f p = 0.0$	$\frac{1}{m}$				
- Primera columna:	$\frac{Panalisis}{b \cdot h \cdot f'c} =$	0		E	ntrar en la p	rimera columr	na	
- Segunda columna:	$dbe \coloneqq \frac{3}{8}$ in =	= 0.953 cm	$Abe \coloneqq \frac{\boldsymbol{\pi} \cdot dbe}{4}$	= 0.713 cm	n ² Diámet	ro y área del ac	ero para esti	ribo
los estribos prese $Av \cdot fy \cdot d$	ntan 2 ramas	$Av \coloneqq 2 \cdot Abc$	$e = 1.425 \ cm^2$ Av	sep:=10 cm	Separa	ción entre estrib	oos en la zon	a confinada
$Vs \coloneqq {sep}$	= 32920.152	:gj ρ := -	$\overline{b \cdot sep} = 0.005$	E	ntrar en la so	egunda columi	18	
- Tercera columna:	Vactuante =	$=\frac{2\cdot Myfp}{Lcol}=$	10.04 tonnef					
Vactuante	xcal := —	10.04	1.1926 = 1	.584 F	ntrar en la te	ercera column		
$b \cdot d \cdot \sqrt{f'c}$	0.30	$0.55 \cdot \sqrt{210}$	10					
$\mathbf{if}\left(sep \leq \frac{d}{3}, \text{``Compare}\right)$	onfor.", "No co	$\operatorname{ponfor."} = \operatorname{"Co}$	onfor." if	$Vs > \frac{3}{4} \cdot Vac$	tuante, "Co	nfor." , "No co	$\operatorname{onfor."} = $	Confor."
≤0.1 ≥0.006	j	≤3 (0.25)	$a1_{0.032}$	b1 0.060	$c1 \\ 0.2$	0.005	0.045	0.060
$at \coloneqq 0.032$ bt	= 0.06 ct	:= 0.2						

*Rotación de cedencia:	$Ic \coloneqq \frac{b \cdot h^3}{12} = 0.0054 \ \boldsymbol{m}^4$	$\theta y f p \coloneqq \frac{Lcol \cdot My f p}{6 \cdot Ec \cdot Ic} = 0$.00079989 ra	d	
*Rotación y momento último: $\theta ufp \coloneqq \theta yfp + at = 0.033 \ rad$	$Mufpa \coloneqq Myfp + rac{0.05 \cdot E}{2}$	$rac{c \cdot Ic \cdot 0.7 \cdot (heta ufp - heta yfp)}{m}$:	=29.963 tonn	nef∙m	
*Momento y rotación residual:	$ heta rfp \coloneqq heta yfp + bt = 0.061$ r	$Mrfp := Myfp \cdot c$	t = 3363.261	kgf∙m	
*Relación entre momento último y ced *Criterios de aceptación:	ente: $\frac{Mufpa}{Myfp} = 1.782$				
≤0.1 ≥0.006	≤3 (0.25) 0.032	0.060 0.2	<i>IO</i> 0.005	<i>LS</i> 0.045	CP 0.060
<i>IO</i> := 0.005 <i>LS</i> := 0.045	CP := 0.06				

- Para hallar los diagramas de momento - rotación de las columnas del segundo y tercer nivel, se usarán las longitudes de cada nivel y los procedimientos desde el item 5 en adelante.

- Para hallar el modelo inelástico de la columna C2-30x60 para el eje local 2-2, se usarán los mismos procedimientos usados para el eje local 3-3.

- Estableciendo el equilibrio de fuerzas y la relación de deformaciones en la figura 4, se obtiene la ecuación para determinar la profundidad del eje neutro de la sección:

 $P1a = 0.85 \ f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy - As \cdot fs$ $(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot fy + As \cdot Es \cdot \varepsilon cu - P1a) \cdot c - As \cdot Es \cdot \varepsilon cu \cdot d = 0 \qquad A \cdot c^2 + B \cdot c + D = 0$ $A := 0.85 \cdot f'c \cdot \beta_1 \cdot b = 379.313 \ \frac{tonnef}{m} \qquad B := A's \cdot fy + As \cdot Es \cdot \varepsilon cu - P1a = -70.892 \ tonnef$ $D := -As \cdot Es \cdot \varepsilon cu \cdot d = -5.7 \ tonnef \cdot m \qquad c := \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 24.759 \ cm \qquad \text{Profundidad del eje neutro}$

- Se verifica que el acero superior a compresion ya cedió y el acero inferior a tracción no ha cedido

$\varepsilon's \coloneqq \frac{ccu^2(c-u^2)}{c} = 0.00239$	$\mathbf{if}ig(arepsilon's\!>\!arepsilon y,$ "ok", "No cu	imple") = "ok"	$f's \coloneqq fy = 4200 \frac{kgf}{cm^2}$	-
$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d-c)}{c} = 0.00003$	$ ext{if}ig(arepsilon s\!<\!arepsilon y, ext{``ok"}, ext{``No cu}$	mple") = "ok"	$fs \coloneqq Es \cdot \epsilon s = 58.315$	<i>kgf</i> <i>cm</i> ²
- Fuerzas resultantes:				
$CA's := A's \cdot f's = 15.961$ tonnet	$Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b =$	= 93.915 tonnef	$TAs \coloneqq As \cdot fs = 0.222$	tonnef
- Curvatura última y momento último:	$ycp = 15 \ cm$		0	
$\phi u_1 a \coloneqq \underline{\qquad} = 0.0121 \underline{\qquad} m$				
$Mu1a \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA$	$As \cdot (ycp - d') + TAs \cdot (d - yc)$	p)=5.823 tonnef • 1	n	
A 4 2 Análisis nara la carga axia	$P1h = Ph + \frac{(Po - Pb)}{Pb}$	- 82 262 tonnef		
Hinótesis:	4	021202 101110		
 El concreto alcanzó su agotar 	niento	% El acero de refu	rzo superior o compresi	ón va cedió
© El concreto alcanzo su agota		6 El acelo de leido		
El acero de refuerzo inferior a	a tracción no na cedido	& Comportamiento	elasto-plastico del acer	0. · ·
- Estableciendo el equilibrio de fuerzas profundidad del eje neutro de la secció	y la relación de deformaciones n:	en la figura 4, se obtie	ne la ecuación para dete	rminar la
$P1b = 0.85 f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fy$	$J - As \cdot fs$			
$(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot fy)$	$+As \cdot Es \cdot \varepsilon cu - P1b \big) \cdot c - As$	$\cdot Es \cdot \varepsilon cu \cdot d = 0$	$A \cdot c^{2} + B \cdot c + D$	= 0
$A \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot b = 379.313 - \frac{b}{2}$	$\frac{onnef}{m} \qquad \qquad B \coloneqq A's \cdot fy + fy$	$As \cdot Es \cdot \varepsilon cu - P1b =$	-43.499 tonnef	
$D = A c_{1} E c_{2} c_{3} d = 5.7 tor$	$-B + \sqrt{B}$	$(2^{2} - 4 \cdot A \cdot D) = 10.26$	8 m Profundida	d del eje neut
$D = -As \cdot Es \cdot eca \cdot a = -5.7$ to				u dei eje neud
$\varepsilon's \coloneqq \frac{\varepsilon cu \cdot (c-d')}{c} = 0.00222$ $\varepsilon s \coloneqq \varepsilon cu \cdot \frac{(d-c)}{c} = 0.00089$	if $(\varepsilon s > \varepsilon y, \text{``ok''}, \text{``No cu}$ if $(\varepsilon s < \varepsilon y, \text{``ok''}, \text{``No cu}$	imple") = "ok"	$f's := fy = 4200 \frac{kgf}{cm^2}$ $fs := Es \cdot \varepsilon s = 1785.00$	- 38
c	$\mathbf{n}(cs \langle cg, ok \rangle, no cu$	imple) = ok	<i>Js</i> = <i>Ls</i> = 1100.00	cm^2
- Fuerzas resultantes				
$CA'_{e} = A'_{e}$, $f'_{e} = 15,961$ tonnet	$f = C_{C} = 0.85 \cdot f'_{C} \cdot \beta \cdot c$	- h - 73 085 toppef	TA e - A e - 6	781 tonnef
Currenture últime y memorte últime	$y_{00} = 15 \text{ cm}$	· · · - · · · · · · · · · · · · · · · ·	$113 = 113 \cdot 53 = 0$	104 United
εcu value utima y momento utimo.	<i>gep</i> = 10 cm			
$\phi u_1 o \coloneqq \underline{m} \equiv 0.01557 - \underline{m}$				
$(\beta_1 \cdot c)$				
$Mu1b \coloneqq Cc \cdot \left(ycp - \frac{1}{2}\right) + CA$	$As \cdot (ycp - d') + TAs \cdot (d - yc)$	$p) = 7.252 \text{ tonnef} \cdot r$	n	
A.5. Estudio de falla controlada por	tracción: P2 < Pb	Pb=54.869 ton	nef	
A.5.1. Análisis para carga axial:	$P2a := \frac{2}{2} \cdot Pb = 36.579 t_{e}$	onnef		
Hipótesis:	3			
» El concreto alcanzó su agotar	niento s F	l acero de refuerzo sun	erior a compresión no ce	dió
2 El agaro de refuerzo inforier	a tracción va cadió % C	amortamiento alasta	nlástico del acero	
		omportannento ciasto-		
	d'			
	$\varepsilon_c = c$	ϵ_{cu} $f_c = 0.85 f_c$		
	$A'_{s} \qquad \varepsilon'_{s} > \varepsilon_{y}$	7 $I_a = f'_s = f_y$	$C_{A's}$	
	CP CP			
$M_2 \setminus \longrightarrow h \cup \downarrow$	- ×		Figura 5.	
	A _s		_	
		$f_y =$	1	
	$ \varepsilon_s - \varepsilon_y$			
	b Deformac.	ión Esfuerzo		
- Estableciendo el equilibrio de fuerzas	b b b b b b b b b b	<i>ión Esfuerzo</i> [°] undidad del eje neutro	de la sección, en funciór	n a la carga ax
- Estableciendo el equilibrio de fuerzas aplicada:	b Deformac	ión Esfuerzo fundidad del eje neutro	de la sección, en funciór	n a la carga ax
- Estableciendo el equilibrio de fuerzas aplicada: $P2a = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot f$	en la figura 5, se define la prof	<i>ión Esfuerzo</i> îundidad del eje neutro	de la sección, en funciór	n a la carga ax

$A = 0.85 \cdot j \cdot c \cdot \beta_1 \cdot v = 579.515$	$B \coloneqq A's \cdot Es \cdot \varepsilon cu - As \cdot fy - P's$	2a = -29.739 tonnef
	$-B+\sqrt{B^2-4\cdot 4\cdot D}$	
$D \coloneqq -A's \cdot Es \cdot \varepsilon cu \cdot d' = -1.14 \text{ tonn}$	$nef \cdot m \qquad c \coloneqq \frac{-B + \sqrt{B} - 4 \cdot A \cdot D}{2 \cdot A} = 10$	D.66 <i>cm</i> Profundidad del eje neutro
- Se verifica que el acero a compresión no	ha cedido y el acero a tracción ya cedió:	
$\varepsilon's \coloneqq \varepsilon cu \cdot \frac{(c-d')}{c} = 0.00159$	$\mathbf{if}(\varepsilon' s < \varepsilon y, "Ok", "No cumple") = "Ok"$	$f's \coloneqq Es \cdot \varepsilon's = 3185.699 \frac{kgf}{cm^2}$
$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d-c)}{c} = 0.00404$	$\mathbf{if}(\varepsilon s > \varepsilon y, \text{``Ok"}, \text{``No cumple"}) = \text{``Ok"}$	$fs \coloneqq fy = 4200 \frac{kgf}{cm^2}$
- Fuerzas resultantes:		
$CA's \coloneqq A's \cdot f's = 12.107$ tonnef	$Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 40.434$ tonnef	$TAs \coloneqq As \cdot fs = 15.961$ tonnef
- Curvatura última y momento último:	ycp = 15 cm	
$\phi u2a \coloneqq \frac{\varepsilon cu}{\varepsilon cu} = 0.02814 \frac{1}{\varepsilon cu}$		
<i>c m</i>		
$Mu2a \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$	$(ycp-d') + TAs \cdot (d-ycp) = 7.04 $ tonnef $\cdot r$	n
A 5 2 Análisis para carga avial:	$P2b = \frac{Pb}{18,20}$ topped	
Hinótoria:	3 10.29 tonnej	
<u>Hipotesis:</u>		, .,
[™] El concreto alcanzo su agotamier	iii 🏀 El acero de refuerzo suj	berior a compression no cedio
‰ El acero de retuerzo inferior a tra	accion ya cedio & Comportamiento elasto	-plastico del acero.
- Estableciendo el equilibrio de fuerzas en la carga axial aplicada:	la figura 5, se define directamente la profundidad	del eje neutro de la sección, en función a
$P2b = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot f's - b + A's \cdot f's - b + a's \cdot f's - b + b's \cdot f's - b's \cdot f's \cdot f's - b's \cdot f's - b$	$-As \cdot fy$	
$= (0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot Es \cdot \varepsilon c)$	$u - As \cdot fy - P2b \cdot c - (A's \cdot Es \cdot \varepsilon cu \cdot d') = 0$	$Ac^2 + Bc + D = 0$
$A \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot b = 379.313 \frac{tonn}{t}$	$B \coloneqq A's \cdot Es \cdot \varepsilon cu - As \cdot fy - P's$	$2b = -11.449 \ tonnef$
m	1	
$D \coloneqq -A's \cdot Es \cdot \varepsilon cu \cdot d' = -1.14$ ton	$nef \cdot m \qquad c \coloneqq \frac{-B + \sqrt{B^2} - 4 \cdot A \cdot D}{2} = 7.$	196 <i>cm</i> Profundidad del eje neutro
	$2 \cdot A$	
- Se verifica que el acero a compresión no	ha cedido y el acero a tracción ya ha cedido.	
$\varepsilon's \coloneqq \varepsilon cu \cdot \frac{(c-d')}{\varepsilon} = 0.00092$	$if(\varepsilon' s < \varepsilon y, "Ok", "No cumple") = "Ok"$	$f's := Es \cdot \varepsilon's = 1830.752 \frac{kgf}{kgf}$
с		cm^2
$\varepsilon_{s} := \varepsilon_{cu} \cdot \frac{(d-c)}{c} = 0.00742$	$if(\varepsilon s > \varepsilon y \text{ "Ok" "No cumple"}) = "Ok"$	$f_s := f_u = 4200 \frac{kgf}{kgf}$
c = = = = = = = = = = = = = = = = = = =	$\mathbf{H}(cs > cg; ok; No cumple) = ok$	$\int \frac{1}{\sqrt{2}} \frac{1}{$
Euerzos resultantes		
$CA'_{2} = A'_{2} = f_{2} = 6.057 \text{ torms f}$	$C_{2} = 0.25 f'_{2} g_{1} h = 27.204$ torm of	$T_{Aav=Aa} = f_{a} = 15.061$ torm of
$CAS := AS \cdot JS = 0.931 \text{ tormej}$	$Cc = 0.85 \cdot j c \cdot \beta_1 \cdot c \cdot 0 = 27.294$ to the j	$TAs := As \cdot fs = 15.901$ tonnej
- Curvatura ultima y momento ultimo: εcu εcu 1	$ycp = 15 \ cm$	
$\frac{\phi u2b \coloneqq}{c} = 0.04169 - \frac{m}{m}$		
(β_{i}, c)		
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$	$(ycp-d')+TAs \cdot (d-ycp)=5.551$ tonnef \cdot	m
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef	$(ycp-d')+TAs \cdot (d-ycp)=5.551$ tonnef \cdot	
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef Hipótesis:	$(ycp-d')+TAs \cdot (d-ycp)=5.551$ tonnef \cdot	<i>m</i>
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento	$(ycp-d') + TAs \cdot (d-ycp) = 5.551$ tonnef ·	<i>m</i> or a compresión no ha cedido
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef · & El acero de refuerzo superio in va cedió . Comportamiento elasto-plá	<i>m</i> or a compresión no ha cedido
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció	$(ycp-d') + TAs \cdot (d - ycp) = 5.551$ tonnef · & El acero de refuerzo superio ón ya cedió & Comportamiento elasto-plá:	<i>m</i> or a compresión no ha cedido stico del acero.
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef \cdot & El acero de refuerzo superio ón ya cedió & Comportamiento elasto-plás	<i>m</i> or a compresión no ha cedido stico del acero.
$Mu2b \coloneqq Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P \coloneqq 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef · % El acero de refuerzo superio % Comportamiento elasto-plás	<i>m</i> or a compresión no ha cedido stico del acero.
$Mu2b := Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P := 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef · % El acero de refuerzo superio % Comportamiento elasto-plá: $\epsilon_c = \epsilon_{cu}$ $f_c = 0.85f'_c$ $A'_s \cdot \cdot \cdot$	m or a compresión no ha cedido stico del acero. $C_{A's}$
$Mu2b := Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P := 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef & El acero de refuerzo superio % Comportamiento elasto-plá: $\epsilon_c = \epsilon_{cu}$ $f_c = 0.85f'_c$ A'_s $\epsilon'_s < \epsilon_y$ a f_s f_s	m or a compresión no ha cedido stico del acero. $C_{A's}$
$Mu2b := Cc \cdot \left(ycp - \frac{\beta_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P := 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció $M \left(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef · % El acero de refuerzo superio % Comportamiento elasto-plás	m or a compresión no ha cedido stico del acero. $C_{A's}$ C_c Figura 6.
$Mu2b := Cc \cdot \left(ycp - \frac{p_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P := 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció $M \left(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef · Son ya cedió & El acero de refuerzo superio Son ya cedió & Comportamiento elasto-plás $c_c = c_{cu}$ $f_c = 0.85f'_c$ $c_s = c_{su}$ $f_s = 0.85f'_s$ $c_s = c_{su}$ $f_s = 0.85f'_s$	<i>m</i> or a compresión no ha cedido stico del acero. $C_{A's}$ C_{C} Figura 6.
$Mu2b := Cc \cdot \left(ycp - \frac{p_1 \cdot c}{2}\right) + CA's \cdot$ A.6. Flexión pura: $P := 0$ tonnef <u>Hipótesis:</u> & El concreto alcanzó su agotamiento & El acero de refuerzo inferior a tracció $M \left(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$(ycp - d') + TAs \cdot (d - ycp) = 5.551$ tonnef. So ya cedió So ya ce	$ \begin{array}{c} \mathbf{m} \\ \mathbf{m} \\ \mathbf{r} \\ \mathbf$

- Estableciendo el equilibrio de fuerzas y la compatibilidad de deformaciones en la figura 6, se define una ecuación que permite obtener la profundidad del eje neutro:

 $0 = 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b + A's \cdot fs - As \cdot fy$ $(0.85 \cdot f'c \cdot \beta_1 \cdot b) \cdot c^2 + (A's \cdot Es \cdot \varepsilon cu - As \cdot fy) \cdot c - A's \cdot Es \cdot \varepsilon cu \cdot d' = 0 \qquad A \cdot c^2 + Bc + D = 0$ $A := 0.85 \cdot f'c \cdot \beta_1 \cdot b = 379.313 \frac{tonnef}{m} \qquad B := A's \cdot Es \cdot \varepsilon cu - As \cdot fy = 6.841 tonnef$ $B := A's \cdot Es \cdot \varepsilon cu - As \cdot fy = 6.841 tonnef$

$$D \coloneqq -A's \cdot Es \cdot \varepsilon cu \cdot d' = -1.14 \ tonnef \cdot m \qquad c \coloneqq \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 4.654 \ cm \qquad \text{Profundidad del eje neutron}$$

- Se verifica que el acero superior a compresión no ha cedido y que el acero inferior a tracción ya cedió: $\varepsilon's := \varepsilon cu \cdot \frac{(c-d')}{c} = -0.00022$ if $(\varepsilon's < \varepsilon y, "Ok", "No cumple") = "Ok"$ $f's := Es \cdot \varepsilon's = -445.567 \frac{kgf}{cm^2}$

$$\varepsilon s \coloneqq \varepsilon c u \cdot \frac{(d-c)}{c} = 0.01311 \qquad \text{if} (\varepsilon s > \varepsilon y, \text{``Ok''}, \text{``No cumple''}) = \text{``Ok''} \qquad fs \coloneqq fy = 4200 \frac{kgf}{cm^2}$$

- Fuerzas resultantes:
- $CA's \coloneqq A's \cdot f's = -1.693 \text{ tonnef} \qquad Cc \coloneqq 0.85 \cdot f'c \cdot \beta_1 \cdot c \cdot b = 17.655 \text{ tonnef} \qquad TAs \coloneqq As \cdot fs = 15.961 \text{ tonnef}$ $\text{Curvatura última y momento último:} \qquad ycp = 15 \text{ cm}$ $\phi ufp \coloneqq \frac{\varepsilon cu}{c} = 0.06446 \frac{1}{m}$

$$Mufp \coloneqq Cc \cdot \left(ycp - \beta_1 \cdot \frac{c}{2}\right) + CA's \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 3.726 \text{ tonnef} \cdot m$$

A.7. Falla en cedencia

- A.7.1. Análisis para la carga axial: P2a = 36.579 tonnef
 - Hipótesis:
 - % El concreto no ha alcanzado su agotamiento
 - % Comportamiento lineal elástico del concreto
- El acero de refuerzo inferior a tracción está justo en la cedencia
 El acero de refuerzo superior a compresión no ha cedido
 Comportamiento elasto-plástico del acero.

- Estableciendo el equilibrio de fuerzas y la compatibilidad de deformaciones en la figura 7, se define una ecuación que permite obtener la profundidad del eje neutro:

$$\left(\frac{Ec \cdot b \cdot \varepsilon y}{2}\right) \cdot c^{2} + (A's \cdot Es \cdot \varepsilon y + As \cdot fy + P2a) \cdot c - (A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P2a \cdot d) = 0 \qquad A \cdot c^{2} + B \cdot c + D = 0$$

$$A \coloneqq \frac{Ec \cdot b \cdot \varepsilon y}{2} = 570.598 \frac{\text{tonnef}}{\text{m}} \qquad B \coloneqq A's \cdot Es \cdot \varepsilon y + As \cdot fy + P2a = 68.502 \text{ tonnef}$$

$$D \coloneqq -(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P2a \cdot d) = -13.933 \text{ tonnef} \cdot m \qquad c \coloneqq \frac{-B + \sqrt{B^{2} - 4 \cdot A \cdot D}}{2 \cdot A} = 10.737 \text{ cm}$$

Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido

$$\varepsilon's \coloneqq \varepsilon y \cdot \frac{(c-d')}{d-c} = 0.00084 \qquad \text{if} \left(\varepsilon's < \varepsilon y, \text{"Ok", "No cumple"}\right) = \text{"Ok"} \qquad f's \coloneqq Es \cdot \varepsilon's = 1689.397 \frac{kgf}{cm^2}$$

 $fclimite := 0.70 \cdot f'c = 147 \frac{kgf}{cm^2}$ Esfuerzo limite del comportamiento elástico del concreto

$$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{d - c} = 0.00158 \qquad \qquad \text{if} \left(\varepsilon c < \varepsilon c u, \text{"Ok", "No cumple"} \right) = \text{"Ok"}$$

 $fc := Ec \cdot \varepsilon c = 343.635 \frac{kgf}{cm^2}$ if (fc < fclimite, "Ok", "No cumple") = "No cumple"

$fclimite \coloneqq 0.70 \cdot f'c = 147 \frac{d}{cm^2}$	- Estuerzo limite del comportamiento elástico del concreto	
$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{d - c} = 0.00121$	$\mathbf{if}(\varepsilon c < \varepsilon c u, "Ok", "No cumple") = "Ok"$	
$fc \coloneqq Ec \cdot \varepsilon c = 263.202 \frac{kgf}{cm^2}$	$\mathbf{if}(fc < fclimite, "Ok", "No cumple") = "No cumple"$	
- Debido a que no cumple, se debe plar equivalente (elasto-plástico). Para ello,	ntear que el concreto se comporte de forma no lineal. Se establece se define una deformación elástica del concreto de 0.0008	un modelo bilineal
- Estableciendo el equilibrio de fuerzas profundidad del eje neutro:	y la relación de deformaciones en la figura 8, se obtiene la ecuaci	ón para determinar la
$c^2 \cdot (2 \cdot \varepsilon u + \varepsilon c u) \cdot (0.85 \cdot f' c \cdot b)$		
$-c \cdot ((2 \cdot \varepsilon u + \varepsilon c u) \cdot (0.85 \cdot f' c \cdot b))$	$\cdot d$ + 2 $\cdot \varepsilon u \cdot f u \cdot (As + A's) + 0.85 \cdot f' \cdot b \cdot \varepsilon c u \cdot d + 2 \cdot \varepsilon u \cdot P2$	(2b)
+ $0.85 \cdot f'c \cdot b \cdot \varepsilon cu \cdot d^2 + 2 \cdot \varepsilon u$	$\cdot fu \cdot (As \cdot d + A's \cdot d') + 2 \cdot \varepsilon u \cdot P2b \cdot d = 0$	$A \cdot c^2 + B \cdot c + I$
$A \coloneqq (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b)$	$= 2.231 \frac{tonnef}{m}$	
$B := -((2, s_{2} + s_{2})) \cdot (0.85, f'_{2})$	$(A_{e} + A'_{e}) + 0.85 \cdot f'_{e} \cdot h \cdot scal \cdot d + 2 \cdot sa$	P2h) = -0.858 tonnef
$D := -((2 \cdot cy + ccy) \cdot (0.05 \cdot fc))$ $D := 0.85 \cdot f'_{c} \cdot h \cdot cou \cdot d^{2} + 2 \cdot cu$	$(-a_1 + 2 \cdot c_2 \cdot j_2 \cdot (a_3 + A_3) + 0.63 \cdot j_1 \cdot 0 \cdot c_2 \cdot a_1 + 2 \cdot c_2 \cdot a_1$	20 = -0.000 <i>intel</i>
$ = 0.03 \cdot j \cdot 0 \cdot \varepsilon \cdot c \cdot u + 2 \cdot \varepsilon y $	$y \cdot j y \cdot (A \circ u + A \circ u) + 2 \cdot e y \cdot f 2 v \cdot u = 0.002 \text{ connel} \cdot m$	
$c \coloneqq \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 9.5$	6 <i>cm</i> Profundidad del eje $m \coloneqq min\left(\frac{\varepsilon cy \cdot (d - \varepsilon y)}{\varepsilon y}\right)$	$(c), c = 5.882 \ cm$
Al obtener la profundidad del eje neu	tro, se verifico que el acero superior a compresión no ha cedido:	
$\varepsilon' s \coloneqq \varepsilon y \cdot \frac{(c-d')}{(d-c)} = 0.00062$	if $(\varepsilon' s < \varepsilon y, \text{"Ok"}, \text{"No cumple"}) = \text{"Ok"}$ $f' s := Es \cdot f'$	$\varepsilon's = 1240.391 \frac{kgf}{cm^2}$
- Luego, se define la resultante de trace	ión y compresión:	
$C_{c1} = 0.85 f'_{c2} (c_{c1} m) \cdot b = 16$	$A13 \text{ tonnef} \qquad C_8 - A'_{0*} f'_{0} - A 714 \text{ tonnef}$	
$C_{c2} = 0.85 \cdot f'_{c1} \cdot m \cdot b = 13 \cdot 124$	$\frac{110}{100000000000000000000000000000000$	
1000000000000000000000000000000000000	$1713 - 113 \cdot jg = 10.301$ to the j	
- Por último, hallamos la curvatura ced $\phi y 2b \coloneqq \frac{\varepsilon y}{d-c} = 0.0136 \frac{1}{m}$	ente y momento cedente:	
$My2b \coloneqq Cc1 \cdot \left(ycp - \left(\frac{c-m}{2}\right)\right) + $	$-Cc2 \cdot \left(ycp - c + rac{2}{3} \cdot m ight) + Cs \cdot \left(ycp - d' ight) + TAs \cdot \left(d - ycp ight) =$	5.456 tonnef • m
A.7.3. Análisis de flexión pura:	$P := 0 \ tonnef$	
Hipotesis:		
El concreto no ha alcanzado s	su agotamiento & El acero de refuerzo inferior a tracción e	esta justo en la cedencia
& Comportamiento lineal elasti	co del concreto & El acero de refuerzo superior a compres.	ion no ha cedido
	Tomportamiento elasto-plastico del acei	r0.
ď		
	$\varepsilon_c < \varepsilon_{cu} \qquad -\sigma f_c \le 0.70F_c$	
	$s \circ c = c \circ s \circ$	
	, <u> / / / / / / / / / / / / / / / / / </u>	
	Figura	9.
A		
	$\varepsilon_s = \varepsilon_y$	
b	Deformación Esfuerzo	
- Estableciendo el equilibrio de fuerzas	y la compatibilidad de deformaciones en la figura 9, se define una	a ecuación que permite
$(Ec \cdot h \cdot \varepsilon_u)$		
$\left(\frac{2\varepsilon \cdot \varepsilon \cdot \varepsilon g}{2}\right) \cdot c^2 + \left(A's \cdot Es \cdot \varepsilon y - \varepsilon^2\right)$	$+As \cdot fy + P) \cdot c - (A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot d + P \cdot d) = 0$	$A \cdot c^2 + B \cdot c + D =$
$A \coloneqq \frac{Ec \cdot b \cdot \varepsilon y}{2} = 570.598 \frac{tonnol}{2}$	$B \coloneqq A's \cdot Es \cdot \varepsilon y + As \cdot fy + P = 31.923 \ tonnef$	
2 m		
$D \coloneqq -(A's \cdot Es \cdot \varepsilon y \cdot d' + As \cdot fy \cdot$	$d+P\cdot d$ = -4.788 tonnef $\cdot m$ $c := \frac{-B+\sqrt{B^2-4\cdot A\cdot A}}{-B+\sqrt{B^2-4\cdot A\cdot A}}$	$= 6.781 \ cm$
, · · · · · · · · · · · · · · · · · · ·	2 · A	

- Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido: $\varepsilon's \coloneqq \varepsilon y \cdot \frac{(c-d')}{d-c} = 0.00021$ if $(\varepsilon's < \varepsilon y, "Ok", "No cumple") = "Ok" f's \coloneqq$ $f's \coloneqq Es \cdot \varepsilon's = 410.57$ - Tambien se verifica que el concreto tenga un comportamiento lineal elástico: $fclímite := 0.70 \cdot f'c = 147 \frac{kgf}{cm^2}$ Esfuerzo límite del comportamiento Esfuerzo límite del comportamiento elástico del concreto $\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{d - c} = 0.00078$ $\mathbf{if}(\varepsilon c < \varepsilon c u, "Ok", "No cumple") = "Ok"$ a-c $fc := Ec \cdot \varepsilon c = 169.898 \frac{kgf}{cm^2}$ if (fc < fclimite, "Ok", "No cumple") = "No cumple"- Debido a que no cumple, se debe plantear que el concreto se comporte de forma no lineal. se establece un modelo bilineal equivalente (elástico-plástico). Para ello, se define una deformación elástica del concreto de 0.0008 - Estableciendo el equilibrio de fuerzas y la relación de deformaciones en la figura 8, se obtiene la ecuación para determinar la profundidad del eje neutro: $c^2 \cdot (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b)$ $-c \cdot \left(\left(2 \cdot \varepsilon y + \varepsilon c y \right) \cdot \left(0.85 \cdot f' c \cdot b \cdot d \right) + 2 \cdot \varepsilon y \cdot f y \cdot \left(A s + A' s \right) + 0.85 \cdot f' c \cdot b \cdot \varepsilon c y \cdot d \right)$ + $2 \cdot \varepsilon y \cdot fy \cdot (As \cdot d + A's \cdot d') + 0.85 \cdot f'c \cdot b \cdot \varepsilon cy \cdot d^2 = 0$ $A \coloneqq (2 \cdot \varepsilon y + \varepsilon cy) \cdot (0.85 \cdot f'c \cdot b) = 2.231 \frac{tonnef}{c}$ $A \cdot c^2 + B \cdot c + D = 0$ $B \coloneqq -((2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f'c \cdot b \cdot d) + 2 \cdot \varepsilon y \cdot fy \cdot (As + A's) + 0.85 \cdot f'c \cdot b \cdot \varepsilon c y \cdot d) = -0.781 \text{ tonnef}$ $D \coloneqq 2 \cdot \varepsilon y \cdot fy \cdot (As \cdot d + A's \cdot d') + 0.85 \cdot f'c \cdot b \cdot \varepsilon cy \cdot d^2 = 0.042 \text{ tonnef} \cdot m$ $c \coloneqq \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot 4} = 6.722 \text{ cm} \qquad \text{Profundidad del eje neutro} \qquad m \coloneqq \min\left(\frac{\varepsilon cy \cdot (d - c)}{\varepsilon y}, c\right) = 6.722 \text{ cm}$ - Al otener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido: $\varepsilon's \coloneqq \frac{\varepsilon y \cdot (c-d')}{d-c} = 0.0002 \qquad \text{if} \left(\varepsilon's < \varepsilon y, \text{``ok''}, \text{``No cumple''}\right) = \text{``ok''} \qquad f's \coloneqq \varepsilon's \cdot Es = 395.565 \frac{kgf}{cm^2}$ - Luego, se define la resultante de tracción y compresión: $Cc1 \coloneqq 0.85 \cdot f'c \cdot (c-m) \cdot b = 0 \text{ tonnef}$ $Cc2 \coloneqq 0.85 \cdot f'c \cdot \frac{m}{2} \cdot b = 14.997 \text{ tonnef}$ $Cs \coloneqq A's \cdot f's = 1.503$ tonnef $T \coloneqq As \cdot fy = 15.961$ tonnef - Por último, hallamos la curvatura cedente y momento cedente: $\phi y f p \coloneqq \frac{\varepsilon y}{d-c} = 0.01149 \frac{1}{m}$ $Myfp \coloneqq Cc1 \cdot \left(ycp - \left(\frac{c-m}{2}\right)\right) + Cc2 \cdot \left(ycp - c + \frac{2}{3} \cdot m\right) + Cs \cdot \left(ycp - d'\right) + TAs \cdot \left(d - ycp\right) = 3.66 \text{ tonnef} \cdot m$ A.8. Diagrama de interacción (Carga axial - Momento) en condición cedente y última P Ρ MyMu0 PoPo0 P1aP1aMu1aMu1aP1bMu1bP1bMu1bPbMbPbMb P2aMy2aP2aMu2aMy2bP2bP2bMu2b0 0 MyfpMufp0 To0 To

- 1	rereera corumna.	v actuante	Lcol						
	Vactuante	maal	4.59	1 1096 - 1 011	1 Entrop o	n la tanaan			
	$b \cdot d \cdot \sqrt{f'c}$	$xcat \coloneqq$	$\cdot 0.25 \cdot \sqrt{210 \cdot 10}$	• 1.1920 = 1.911 10	L Entrar e	en la tercer			
	$ \mathbf{if}\left(sep \le \frac{d}{3}, \text{``Compare}\right) $	onfor.", "No co	onfor.") = "No	confor." $\mathbf{if}\left(Vs\right)$	$> \frac{3}{4} \cdot Vactua$	unte , "Con	ıfor." , "No coı	nfor.") = "	Confor. ³
≥0.6	≥0.00	6	≤3 (0.25)	a1 0.010	b 1 0.010	$\begin{array}{c} c1 \\ 0.0 \end{array}$	0.003	0.009	0.010
	at := 0.010	bt := 0.010	$ct \coloneqq 0$						
*R	Rotación de cedenci	a:	$Ic \coloneqq \frac{b \cdot h}{12}$	$m^{3} = 0.0006 \ m^{4}$	$ heta y50 \coloneqq$	$\frac{Lcol \cdot My}{6 \cdot Ec \cdot Ic}$	$\frac{50}{2} = 0.003511$	07 rad	
*R	Rotación y momente	o último:		0.05	1.07(0)				
	$\theta u 50 \coloneqq \theta y 50 + d$	at = 0.014 rad	$Mu50 \coloneqq$	$My50 + \frac{0.05 \cdot Ec \cdot}{2}$	$\frac{1c \cdot 0.7 \cdot (\theta u)}{m}$	$b0 - \theta y 50)$	-=8.117 tonn	ef∙m	
*N	Momento y rotaciór	ı residual:	$\theta r50 \coloneqq \theta g$	y50 + bt = 0.014 ra	ad Mr5	$0 \coloneqq My50$	• ct = 0 kgf • n	1	
*D) alagión antra mam	anta última y a	Mu5) - 1.056					
*(Criterios de aceptac	ión:	$\overline{My5}$	_= 1.050)					
	interios de deeptae						ΙΟ	LS	CP
≥0.6	≥0.00	6	≤3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010
					<i>IO</i> :=	= 0.003	LS := 0.009	CP	= 0.010
A.	.2. Caso de estudio	: Panálisi	is:=35 tonnef	1					
	$My35 \coloneqq 6.749 t$	onnef∙m		$\phi y35 \coloneqq 0.016 - \frac{1}{m}$	<u> </u>				
- P	Primera columna:	$\frac{Panálisis}{b \cdot h \cdot f'c} =$	= 0.222		Entrar e	en la prime	ra columna		
- P - S	Primera columna: Segunda columna:	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$	= 0.222 = 0.953 <i>cm</i>	$Abe \coloneqq \frac{\pi \cdot dbe^2}{4} =$	Entrar e = 0.713 <i>cm</i> ²	e n la prime Diámetr	ra columna o y área del ace	ro para estr	ibo
- F - S	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{Vs}$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$ $dbe := 14963.705 i$	= 0.222 = 0.953 cm $Av := 2 \cdot Abe$ kgf ρ :	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{4} = 0.006$	Entrar e = 0.713 <i>cm</i> ² p := 10 <i>cm</i> Entrar e	n la prime Diámetr Separaci n la seguno	ra columna o y área del ace ión entre estribo da columna	ro para estr os en la zona	ibo a confina
- F - S	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $dbe \coloneqq 14963.705 i$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $2 \cdot Mv^{25}$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$	Entrar e = 0.713 <i>cm</i> ² p := 10 <i>cm</i> Entrar e	n la prime Diámetr Separaci n la seguno	ra columna o y área del ace ión entre estribo da columna	ro para estr os en la zona	ibo a confina
- F - S - T	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna:	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $dbe \coloneqq 14963.705 i$ $Vactuante \approx$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$	Entrar e = 0.713 <i>cm</i> ² p := 10 <i>cm</i> Entrar e	en la prime Diámetr Separaci en la seguno	ra columna o y área del ace ión entre estribo da columna	ro para estr os en la zon:	ibo a confina
- F - S - T	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: Vactuante	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $dbe := 14963.705 i$ $Vactuante :=$ $magle =$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= 1.026 = 1.675$	Entrar e = 0.713 <i>cm</i> ² p := 10 <i>cm</i> Entrar e	en la prime Diámetr Separaci en la seguno	ra columna o y área del ace ión entre estribo da columna	ro para estr os en la zona	ibo a confina
- F - S - T	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $mtan 2 ramas:$ $= 14963.705 i$ $Vactuante \coloneqq$ $xcal \coloneqq \frac{1}{0.25}$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 1}$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$	Entrar e = 0.713 <i>cm</i> ² p := 10 <i>cm</i> Entrar e 8 Entrar e	en la prime Diámetr Separaci en la seguno en la tercer	ra columna o y área del ace ión entre estribo da columna a columna	ro para estr os en la zon:	ibo a confina
- F - S - T	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $if\left(sep \le \frac{d}{3}, \text{"Columna:}\right)$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $dbe \equiv \frac{3}{8} in$ $dbe = \frac{3}{8} in$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 1}$ onfor." = "No	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor. if (Vs)$	Entrar e = 0.713 cm^2 = 10 cm Entrar e 8 Entrar e > $\frac{3}{4} \cdot Vactua$	en la prime Diámetr Separaci en la segund en la tercer ente , "Con	ra columna o y área del ace ión entre estribo da columna a columna nfor.", "No con	ro para estr os en la zon: nfor.") = "	ibo a confina Confor.
- F - S - T	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $if\left(sep \le \frac{d}{3}, \text{"Col}\right)$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $dbe \equiv \frac{3}{8} in$ $dbe = \frac{3}{8} in$	= 0.222 = 0.953 cm Av := 2 • Abe kgf ρ : = $\frac{2 • My35}{Lcol} = 4$ 4.029 • 0.25 • $\sqrt{210 • 3}$ onfor.") = "No ≤3 (0.25)	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor." if (Vs)$ $a1_{0.032}$	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $> \frac{3}{4} \cdot Vactua$ b1 0.060	en la prime Diámetr Separaci en la segund en la tercer ente , "Con c1 0.2	ra columna o y área del ace ión entre estribo da columna a columna 1for.", "No con 0.005	ro para estr os en la zon: nfor.") = " 0.045	ibo a confina Confor. 0.060
- F - S - T ≤0.1 at	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \le \frac{d}{3}, \text{"Col} \ge 0.000)$:= 0.032 bt := 0	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 100}$ onfor." = "No $\leq 3 (0.25)$ 0.20	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor. if \left(Vs : a_1 \\ 0.032 \right)$	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $> \frac{3}{4} \cdot Vactua$ $\frac{b1}{0.060}$	en la prime Diámetr Separaci en la segund en la tercer ente , "Con c1 0.2	ra columna o y área del ace ión entre estribo da columna a columna afor.", "No con 0.005	ro para estr os en la zona nfor.") = " 0.045	ibo a confina Confor. 0.060
- F - S - T ≤0.1 at *R	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \le \frac{d}{3}, \text{"Col} \ge 0.000)$:= 0.032 $bt := 0Rotación de cedenci$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $dbe \equiv \frac{3}{8} in$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 3}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor." \ if \left(Vs : \frac{a1}{0.032}\right)$ $= -0.0006 \ m^4$	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $> \frac{3}{4} \cdot Vactua$ $\frac{b1}{0.060}$ $\theta y_{35} := \frac{Lca}{6}$	en la prime Diámetre Separaci en la segund en la tercer ente, "Con c_1^1 0.2 $bl \cdot My35$ $ec \cdot Ic =$	ra columna o y área del ace ión entre estribo da columna a columna ifor.", "No con 0.005 = 0.00308184 a	ro para estr os en la zon: nfor.") = " 0.045 rad	ibo a confina Confor. 0.060
- F - S - 1 ≤0.1 *R *R	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \leq \frac{d}{3}, \text{"Col}\right)$ ≥ 0.000 ≈ 0.032 $bt \approx 0$ Rotación de cedenci	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8}$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 3}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor." if \left(Vs : \frac{a1}{0.032}\right)$ $= 0.0006 \ m^4$	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $> \frac{3}{4} \cdot Vactua$ $\frac{b1}{0.060}$ $\theta y 35 := \frac{Lco}{6}$	en la prime Diámetre Separaci en la seguno en la tercer wate, "Con c_1^0 $b \cdot My35$ $e E \cdot C = 1$	ra columna o y área del ace ión entre estribo da columna a columna afor.", "No con 0.005 = 0.00308184 a	ro para estr os en la zon: nfor.") = " 0.045 rad	ibo a confina Confor. 0.06(
- F - S - T ≤0.1 at *R *R	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \leq \frac{d}{3}, \text{"Col}\right)$ ≥ 0.000 := 0.032 $bt := 0Rotación de cedenci\theta u 35 := \theta y 35 + d$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $vactuante ::$ $xcal := \frac{14963.705}{0.25} in$ $vactuante ::$ $xcal := \frac{1000}{0.25} in$ $dbe := 0$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 1}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$ $Mu35 := 1$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $0.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor." \ if \left(Vs: \frac{a1}{0.032}\right)$ $= 0.0006 \ m^4$ $My35 + \frac{0.05 \cdot Ec \cdot bc}{0.05 \cdot Ec \cdot bc}$	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $> \frac{3}{4} \cdot Vactua$ $\frac{b1}{0.060}$ $\theta y 35 := \frac{Lco}{6} \cdot \frac{1}{6}$	en la prime Diámetr Separaci en la segund en la tercer mte, "Con c_1 0.2 $bl \cdot My35$ $c c \cdot Ic$ = $35 - \theta y35$)	ra columna o y área del ace ión entre estribo da columna a columna afor.", "No con 0.005 = 0.00308184 a -= 8.118 <i>tonn</i>	ro para estr os en la zona nfor.") = " 0.045 rad	ibo a confina Confor. 0.06(
- F - S - T ≤0.1 at *R *R *R	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \leq \frac{d}{3}, \text{"Col} \geq 0.000\right)$:= 0.032 $bt := 0Rotación de cedenciaRotación y momente\theta u 35 := \theta y 35 + contentesMomento y rotación$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe \coloneqq \frac{3}{8} in$ $dbe \equiv \frac{3}{8} in$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot r}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$ $Mu35 := J$ $\theta r35 := \theta g$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor." \ if \left(Vs: \frac{a1}{0.032}\right)$ $= -0.0006 \ m^4$ $My35 + \frac{0.05 \cdot Ec \cdot m^4}{0.05 \cdot Ec \cdot m^4}$ $y35 + bt = 0.063 \ radius$	Entrar e = 0.713 cm ² = 0.713 cm ² = 10 cm Entrar e S Entrar e $\frac{3}{4} \cdot Vactua$ $\frac{b1}{0.060}$ $\theta y35 := \frac{Lca}{6} \cdot \frac{1}{6}$ $\frac{1c \cdot 0.7 \cdot (\theta u)}{m}$ ad Mr3	en la prime Diámetr Separaci en la segund en la tercer ente, "Con c_1^1 0.2 $bl \cdot My35$ $c c \cdot Ic$ $c l = 35 - \theta y35$) 5 := My35	ra columna o y área del ace ión entre estribo da columna a columna afor.", "No con 0.005 = 0.00308184 a -= 8.118 tonn $\cdot ct = 1349.8$ k	ro para estr as en la zon: nfor.") = " 0.045 rad pef \cdot m cgf \cdot m	ibo a confina Confor. 0.060
- F - S - 1 ≤0.1 at *R *R *R	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \leq \frac{d}{3}, "Colored on the second s$	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $\frac{dbe := \frac{3}{8} in}{b \cdot h \cdot f'c} =$ $\frac{dbe := \frac{3}{8} in}{a} =$ $\frac{14963.705 i}{Vactuante} =$ $\frac{xcal := \frac{1}{0.25}}{0.25}$ $\frac{xcal := \frac{1}{0.25}}{0.25}$ $\frac{c}{a} =$ $\frac{c}{a} =$ $\frac{c}{a} = 0.035 rad$ $\frac{c}{a} = 0.035 rad$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 3}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$ $\theta r 35 := \theta$ $Mu35$	$Abe := \frac{\pi \cdot dbe^{2}}{4} =$ $= 1.425 \ cm^{2} \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$ $.029 \ tonnef$ $= \cdot 1.1926 = 1.678$ $confor." if \left(Vs : 2s - \frac{a1}{0.032}\right)$ $= 0.0006 \ m^{4}$ $My35 + \frac{0.05 \cdot Ec \cdot bc}{0.063 \ race}$ $y35 + bt = 0.063 \ race$	Entrar e = 0.713 cm^2 p := 10 cm Entrar e 8 Entrar e 8 Entrar e b1 0.060 $\theta y35 := \frac{Lco}{6}$ $1c \cdot 0.7 \cdot (\theta u)$ m ad Mr3	en la prime Diámetre Separaci en la seguno en la tercere ente, "Con c_1^{-} c_2^{-} $b \cdot My35$ $c c \cdot Ic$ $c_35 - \theta y35)$ 5 := My35	ra columna o y área del ace ión entre estribo da columna a columna afor.", "No con 0.005 = 0.00308184 a -= 8.118 tonn $\cdot ct = 1349.8$ k	ro para estr as en la zon: nfor.") = " 0.045 rad ef \cdot m egf \cdot m	ibo a confina Confor. 0.060
- F - S - T ≤0.1 at *R *R *R *R *R *R	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \leq \frac{d}{3}, \text{ "Co}\right)$ ≥ 0.000 ≈ 0.032 bt ≈ 0.000 Rotación de cedenci Rotación y momente $\theta u 35 \coloneqq \theta y 35 + c$ Momento y rotación Relación entre mom	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $\frac{dbe := \frac{3}{8} in}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$ $ran 2 ramas:$ $= 14963.705 i$ $Vactuante ::$ $xcal := \frac{14963.705 i}{0.060}$ $ct := 0$	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 3}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$ $\theta r 35 := \theta g$ edente: $\frac{Mu33}{My33}$	$Abe := \frac{\pi \cdot dbe^{2}}{4} =$ $= \frac{1.425}{4} cm^{2} sep$ $= \frac{Av}{b \cdot sep} = 0.006$ 0.029 tonnef $= \cdot 1.1926 = 1.678$ confor." if (Vs: a1 0.032 $= 0.0006 m^{4}$ $My35 + \frac{0.05 \cdot Ec \cdot m^{2}}{3}$ $= 1.203$	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $> \frac{3}{4} \cdot Vactua$ b1 0.060 $\theta y35 := \frac{Lco}{6} \cdot \frac{1}{6} \cdot \frac{1}{$	en la prime Diámetri Separaci en la seguno en la tercer mte, "Con c1 0.2 $bl \cdot My35$ $cc \cdot Ic$ = $35 - \theta y35$) 5 := My35	ra columna o y área del ace ión entre estribu da columna a columna afor.", "No con 0.005 = 0.00308184 a -= 8.118 tonn $\cdot ct = 1349.8$ k	ro para estr os en la zona nfor.") = " 0.045 rad eef · m egf · m	ibo a confina Confor. 0.060
- F - S - 1 ≤0.1 at *R *R *R *R *R *R (*R) *R (*)	Primera columna: Segunda columna: los estribos prese $Vs := \frac{Av \cdot fy \cdot d}{sep}$ Fercera columna: $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ if $\left(sep \leq \frac{d}{3}, \text{"Col}\right)$ ≥ 0.000 ≈ 0.032 $bt \approx 0$ Rotación de cedencia Rotación de cedencia Rotación y momente $\theta u 35 := \theta y 35 + c$ Momento y rotaciór Relación entre mom Criterios de aceptac A	$\frac{Panálisis}{b \cdot h \cdot f'c} =$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $dbe := \frac{3}{8} in$ $cal := \frac{14963.705}{0.25} in$ $Vactuante ::$ $xcal := \frac{1}{0.25}$ $dbe := \frac{1}{0.25}$ $cal := \frac{1}{0.25}$ $dbe := $	$= 0.222$ $= 0.953 cm$ $Av := 2 \cdot Abe$ $kgf \qquad \rho:$ $= \frac{2 \cdot My35}{Lcol} = 4$ 4.029 $\cdot 0.25 \cdot \sqrt{210 \cdot 3}$ onfor.") = "No $\leq 3 (0.25)$ 0.20 $Ic := \frac{b \cdot h}{12}$ $dr35 := dy$ $edente: \qquad \frac{Mu33}{My33}$ $\leq 3 (0.25)$	$Abe := \frac{\pi \cdot dbe^2}{4} =$ $= 1.425 \ cm^2 \ sep$ $= \frac{Av}{b \cdot sep} = 0.006$.029 tonnef $= \cdot 1.1926 = 1.678$ confor." if (Vs: a1 0.032 a2 a1 0.032 a3 = = 0.0006 m^4 $My35 + \frac{0.05 \cdot Ec \cdot 1}{5}$ $y35 + bt = 0.063 \ rate{b}{5} = 1.203$ 0.032	Entrar e = 0.713 cm ² p := 10 cm Entrar e 8 Entrar e $\frac{3}{4} \cdot Vactua$ $\frac{b1}{0.060}$ $\theta y35 := \frac{Lca}{6} \cdot \frac{1c \cdot 0.7 \cdot (\theta u)}{6}$ m ad Mr3	en la prime Diámetri Separaci en la segund en la tercer mte, "Con c_1^0 $bl \cdot My35$ $Ec \cdot Ic$ $35 - \theta y35$) 5 := My35 0.2	ra columna o y área del ace ión entre estribu da columna a columna a columna for.", "No con 0.005 = 0.00308184 f -= 8.118 tonn $\cdot ct = 1349.8$ k 100	ro para estr os en la zona nfor.") = " 0.045 rad pef \cdot m pgf \cdot m LS 0.045	ibo a confina Confor. 0.060

A.3. Caso de estud	io: Panálisis :=	=16 tonnef	,					
My16 := 5.236 to	nnef•m		$\phi y 16 = 0.013$	3				
	Den álisis			m				
- Primera columna:	$\frac{Panalisis}{b \cdot h \cdot f'c} = 0.$	102			Entrar en la	a primera colum	na	
- Segunda columna	$: dbe := \frac{3}{8} in = 0$.953 cm	$Abe \coloneqq \frac{\boldsymbol{\pi} \cdot dbe}{4}$	$e^2 = 0.713$	cm ² Diár	netro y área del ao	ero para est	ribo
los estribos pres $Vs \coloneqq Av \cdot fy \cdot f$	sentan 2 ramas: $d = 14963.705 \ kg$	$Av \coloneqq 2 \cdot Abe$ $f \qquad \rho \coloneqq -\frac{1}{l}$	$= 1.425 \ cm^2$ $\frac{Av}{Av} = 0.006$	<i>sep</i> ≔ 10 c	m Sepa Entrar en la	aración entre estril a segunda colum	bos en la zon na	ia confinada
- Tercera columna:	$Vactuante := -\frac{2}{2}$	$\frac{2 \cdot My16}{Lcol} = 3$	3.126 tonnef					
Vactuante		3.126	$\cdot 1.1926 = 1$.302	Entrar en la	a tercera column	a	
$b \cdot d \cdot \sqrt{f'c}$	0.25•0	$.25 \cdot \sqrt{210} \cdot$	10	3				
$\operatorname{if}\left(sep\leq \frac{\pi}{3}, \text{``C}\right)$	Confor." , "No conf	[or."] = "No	confor." if	$Vs > \frac{1}{4} \cdot Va$	ictuante,"	Confor." , "No c	onfor." $=$ "	'Confor."
≤0.1 ≥0.0	006 ≤	3 (0.25)	a1 0.032	b1 0.060	$c1 \\ 0.2$	0.005	0.045	0.060
at := 0.032	$bt \coloneqq 0.06$ $ct \coloneqq$	0.2	3		Lcol Mul	6		
*Rotación de ceden	cia:	$Ic \coloneqq \frac{0.77}{12}$	$\frac{m}{2} = 0.0006 \ m^{2}$	$\theta y 16 \coloneqq$	$\frac{1000 \cdot Mg}{6 \cdot Ec \cdot Ic}$	= 0.00239095	i rad	
*Rotación y momen	nto último:		0.07		(0.10.0	10)		
$\theta u 16 \coloneqq \theta y 16 +$	- at = 0.034 rad	$Mu16 \coloneqq$	$My16 + \frac{0.05 \cdot .}{}$	$Ec \cdot Ic \cdot 0.7 \cdot $ m	$(\theta u 16 - \theta y)$	$\frac{(16)}{(16)} = 6.605$ tor	ınef∙m	
*Momento y rotacio	ón residual:	$\theta r 16 \coloneqq \theta$	y16 + bt = 0.06	2 rad	$Mr16 \coloneqq M_3$	$y16 \cdot ct = 1047.2$	kgf∙m	
*Relación entre mo	mento último y cede	ente: $\underline{Mu1}$	$\frac{6}{-}=1.262$					
*Criterios de acepta	ición:	My1	6					
≤0.1 ≥0.0	006 ≤	3 (0.25)	0.032	0.060	0.2	<i>IO</i> 0.005	<i>LS</i> 0.045	CP 0.060
				IO := 0	.005	LS := 0.045	CF	• ;=0.06
A.4. Caso de estud	io: Panálisis:=	=0 tonnef						
Myfp = 3.66 tonn	nef·m		$\phi y f p = 0.011$	<u>1</u> m				
- Primera columna:	$\frac{Panálisis}{b \cdot h \cdot f'c} = 0$			Ent	rar en la pr	imera columna		
Corrector of the sector	3	052	$\pi \cdot db$	e ² 0.712	2 D:{			
- Segunda columna	$abe \coloneqq -\frac{m}{8} = 0$.953 CM	Abe :=	—=0.713 (cm Diar	netro y area dei ad	ero para esu	100
los estribos pres $Vs := Av \cdot fy \cdot f$	sentan 2 ramas: 2 <u>d</u> =14963.705 kg	$Av \coloneqq 2 \cdot Abe$ $f \qquad \rho \coloneqq -\frac{1}{l}$	$\frac{=1.425 \text{ cm}^2}{Av} = 0.006$	<i>sep</i> ≔ 10 <i>c</i> Ent	m Sepa trar en la seg	aración entre estril gunda columna	oos en la zon	ia confinada
- Tercera columna:	$Vactuante := -\frac{2}{3}$	$\frac{2 \cdot Myfp}{Lcol} = 2$	2.185 tonnef					
Vactuante	_	2.185						
$b \cdot d \cdot \sqrt{f'c}$	$xcal \coloneqq $ 0.25 • 0	$.25 \cdot \sqrt{210 \cdot}$	$- \cdot 1.1926 = 0$ 10	.91 Ent	rar en la tei	rcera columna		
$\operatorname{if}\left(sep \leq \frac{d}{3}, \text{``C}\right)$	Confor.", "No conf	$\operatorname{Eor."} = \operatorname{"No}$	confor." if	$\left(Vs > \frac{3}{4} \cdot Va\right)$	uctuante,"(Confor." , "No c	onfor." =	'Confor."
≤0.1 ≥0.0	06 ≤	3 (0.25)	$a1 \\ 0.032$	b1 0.060	$c1_{0.2}$	0.005	0.045	0.060
at := 0.032	bt := 0.06	c	t := 0.2					
		L 1	3		Loci M.	fm		
*Rotación de ceden	cia:	$Ic := \frac{0 \cdot I}{12}$	$\frac{u}{2} = 0.0006 \ m^{2}$	$\theta y f p :=$	$\frac{1coi \cdot My}{6 \cdot Ec \cdot Ic}$	$\frac{P}{c} = 0.00167131$	rad	
$\theta ufp := 0$	$\theta y f p + at = 0.034 \ rad$	$Mufpa \coloneqq Myfp$	$+\frac{0.05 \cdot Ec \cdot Ic}{}$	$\cdot 0.7 \cdot (\theta u f)$	$= \frac{\theta - \theta y f p}{\theta} =$	5.029 tonne	f·m	
-------------------	-----------------------------------	---------------------------------------	------------------------------------	--------------------------------	--	--------------------	--------------	----------
*Moment y 1	rotación residual:	$\theta rfp \coloneqq \theta yfp + b$	t=0.062 rad	Mrfp:	$=Myfp \cdot ct$	=732.009 kg	ıf∙m	
*Relación er	ntre momento último y cede	ente: $\frac{Mufpa}{Myfp} = 1.$	374					
*Criterios de	e aceptación:							
≤0.1	≥0.006	≤3 (0.25)	0.032	0.060	0.2	<i>IO</i> 0.005	$LS_{0.045}$	$C_{0.}$
10 00	LS = 0.045	CP = 0.0)6					

- Para hallar los diagramas de momento - rotación de las columnas del segundo y tercer nivel, se usarán las longitudes de cada nivel y los procedimientos desde el item 5 en adelante.

- Para hallar el modelo inelástico de la columna C-25x30 para el eje local 3-3, se usarán los mismos procedimientos usados para el eje local 2-2.

$D \coloneqq - (fy \cdot (A's \cdot$	$d' + As \cdot d)) = -17$	7.042 <i>tonnef ∙ m</i>	_B+1	$B^2 = 4 \cdot 4 \cdot D$	-		
			$c \coloneqq \frac{-D+\sqrt{2}}{2}$	$\frac{D}{2 \cdot A}$	-=11.65 <i>cm</i>		
Al obtener la profun	lidad del eje peutro	sa varifica qua al a	aro superior a co	mpresión no ha	cedido:		
$\varepsilon's := \frac{\varepsilon y \cdot (c - d')}{\varepsilon's}$	-= 0.00029	$f's := Es \cdot \varepsilon's = 57$	7.705 kgf	if(e's<	εu "ok" "no cu	mple") = "o	ok"
d-c	- 0.00020	J 8 28. C 8 - 01	cm ²	n (c 5 <	eg, or , no cu	mpre) = 0	/K
- Además verificamos	que el concreto teng	ga un comportamien	to elástico:				
$fclímite \coloneqq 0.70$ ·	$f'c = 147 \frac{kgf}{cm^2}$	Esfuerzo límite de concreto	comportamiento	elástico del			
$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{(d-c)} = 0.$	00051	$\mathbf{if}(\varepsilon c < \varepsilon c u, \mathbf{``ok''})$, "No cumple")="ok"			
$fc \coloneqq Ec \cdot \varepsilon c = 109$	$9.994 \frac{kgf}{cm^2}$	$\mathbf{if}(fc < fclimite,$	"ok", "no cum	ple") = "ok"			
So dofino la regultant	a da tracción y com	nrogión:					
$Cc := \frac{fc \cdot c \cdot b}{c} = 1$	e de tracción y com 19 222 tonne f	$T := As \cdot f'$	u = 24.94 tonne	of Cs:	$= A'_{s} \cdot f'_{s} = 5.717$	tonnef	
2	10.222 conneg	1 ·= 110 · J	g = 21.51 00000		-110-50-0.111	tonnej	
- Por último se obtiend εy	e la curvatura cedent	te y el momento ced	ente:				
$\varphi y \coloneqq \frac{1}{d-c} \equiv 0.0$	$\frac{1}{m}$						
$My \coloneqq Cc \cdot \frac{2}{3} \cdot c +$	$-Cs \cdot (c-d') + T \cdot$	(d-c) = 13931.35	kgf•m				
		Lizanda las tablas Al	SCE 41 12)				
- Primera columna:	$fb = 6000 \frac{kgf}{fb}$	$ab := 0.85 \cdot \frac{f'a}{f'a}$	$c = \beta 1 \cdot (fb = b $	(-0.021)	$a := \frac{As}{a} = 0.003$	a' = A'	$\frac{s}{-0.005}$
T Timera corannia.	cm^2	μο= 0.00 fy	(fb+fy))=0.021 /	$b \cdot d$	<i>b</i> • •	d
$\frac{\rho - \rho'}{\rho b} = -0.103$					Entrar en la p	rimera colui	mna
Se usó estribos de	3/8" en dos ramas:	$dhe := \frac{3}{2}in = 0.9$	53 cm Ae:	$-\frac{\boldsymbol{\pi} \cdot dbe^2}{-0}$	713 cm^2 Av	:-2. Ae - 1	$425 \ cm^2$
Separación entre e	stribos: $sep := 10$	cm 8 8	110	4	110 0110 110		. 120 0
$Vs := \frac{Av \cdot fy \cdot d}{Vs}$	= 35912.893 kgf	$Vactuante \coloneqq$	$\frac{2 \cdot My}{1} = 12.22$	tonnef			
sep							
- Segunda columna:	$ \mathbf{if}\left(sep \le \frac{a}{3}, \text{``Con}\right) $	nfor.", "No confor	(.") = "Confor."	,			
	$\mathbf{if}\left(Vs > \frac{3}{4} \cdot Vact\right)$	uante, "Confor."	"No confor.")	= "Confor."	Entrar en la se	gunda colui	mna
- Tercera columna: Ve	actuante, 1 1926	$r_{cal} =$	12.22	1 1926 - 1 767	Entrar en la te	ercera colum	ina
b -	$\cdot d \cdot \sqrt{f'c}$	0.3 • 0	$.6 \cdot \sqrt{210 \cdot 10}$	1.1020 - 1.101		reera corum	ma
		a	b	c			
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
at := 0.025	bt := 0.05	$ct \coloneqq 0.2$					
*Rotación de cedencia	$Ic := \frac{b}{c}$	$p \cdot h^3 = 0.007 \ m^4$	$\theta y \coloneqq \frac{Lvige}{d}$	$\frac{a \cdot My}{0.000} = 0.000$	4 <i>rad</i>		
		12	$6 \cdot E$				
*Rotación y momento	último: $\theta u := \theta$	$\partial y + at = 0.025$ rad	$d Mu \coloneqq My -$	$+\frac{0.05 \cdot Ec \cdot Ic}{2}$	$\frac{\cdot 0.3 \cdot (\theta u - \theta y)}{m} =$: 19527.795	kgf∙m
*Rotación v momento	residual: $\theta r := \theta$	bu + bt = 0.05 rad	Mr := Mu.	ct = 2786.27 k	af•m		
*Criterios de aceptació	ón:	,	y				
	12 (0.25)	0.005	0.05	0.0	IO	LS	CP
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
				IO := 0.010	LS := 0.025	$CP \coloneqq 0.$.05

- Al obtener la pro	ofundidad del eje neutro, se ver	ifica que el acero su	perior a	compresión no ha	cedido:		
$\varepsilon's \coloneqq \frac{\varepsilon y \cdot (c)}{d-1}$	$\frac{-a}{c} = 0.00048$ f's :=	$\varepsilon' s \cdot Es = 959.312$	kgj	$\mathbf{if}(\varepsilon's < \varepsilon)$	arepsilon y, "ok" , "No c	umple") =	"ok"
u .			CIII				
- Luego, se define	e la resultante de tracción y con	npresión:	m				
$Cc1 \coloneqq 0.85$ •	$f'c \cdot (c-m) \cdot b = 0$ tonnef	$Cc2 \coloneqq 0.85 \cdot f'c$	$\cdot \frac{1}{2} \cdot b$	=40.769 tonnef	$Cs \coloneqq A's \cdot T \coloneqq As \cdot f$	f's = 5.696 y = 41.566	i tonnef tonnef
- Por último se ob	tiene la curvatura cedente y el	momento cedente:					
$\phi y \coloneqq \frac{\varepsilon y}{(d-s)}$	$-=0.0047 \frac{1}{m}$						
(u-c)	(c-m)	2,m					
$My \coloneqq Cc1 \cdot ($	$\left(d - \frac{(c - m)}{2}\right) + Cc2 \cdot \left(d - c - \frac{c}{2}\right)$	$\left(\frac{2\cdot m}{3}\right) + Cs \cdot \left(d \cdot d\right)$	-d')=2	25525.261 kgf ∙n	ı		
5. DIAGRAMA MON	MENTO - ROTACIÓN (Usand	o las tablas ASCE 4	1-13)				
- Primera column	a: $fb \coloneqq 6000 \frac{kgf}{2} \rho$	$b \coloneqq 0.85 \cdot \frac{f'c}{f} \cdot \beta 1$	$\cdot \left(\frac{fb}{fl} \right)$	$\left(\frac{1}{6\pi}\right) = 0.021 \qquad \rho$	$= \frac{As}{b} = 0.005$	$\rho' := \frac{A}{L}$	$\frac{4's}{d} = 0.003$
	, cm -	$J \mathcal{Y}$	(] 0 +]	<i>'Y</i> /	$v \cdot a$	U	•• a
$xcal := \frac{\rho - \rho}{ch}$	-=0.103				Entrar en	la primera	columna
ρο		2		π , dbe^2			
Se usó estribo	os de $3/8$ " en dos ramas: $dbe =$	$=\frac{6}{8}$ in $= 0.953$ cn	n A	$e \coloneqq \frac{\pi \cdot abc}{4} = 0.$	713 cm ² Au	$y \coloneqq 2 \cdot Ae \equiv$:1.425 cm ²
Separación er $Av \cdot fu$	tre estribos: $sep \coloneqq 10 \ cm$	2•M	11	1			
$Vs \coloneqq \frac{10^{-9} g}{sep}$	$= 35912.893 \ kgf$ V	$actuante := \frac{2 \cdot in}{Lvia}$	$\frac{g}{a} = 22.3$	391 tonnef			
F	(d						
- Segunda colum	ha: if $sep \le \frac{\alpha}{3}$, "Confor."	, "No confor." $=$	"Confoi	."			
		/					
	$if Vs > - \cdot Vactuante$, "Confor.", "No	confor.'	' = "Confor."	Entrar en	la segunda	i columna
T 1	Vactuante	22.	391	,			
- Tercera columna	$y \coloneqq \frac{1.1926}{h \cdot d \cdot \sqrt{f'c}} \cdot 1.1926$	0 30 • 0 60 •	$\sqrt{(210)}$	$\bullet 1.1926 = 3$.237 Entrar en	la tercera	columna
	Jul yje	0.50 • 0.00 •	V (210.	10)			
≤0.0 C	≤3 (0.25)	a 0.025	0.05	0.2	0.010	0.025	0.05
≥0.5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
r1 = 0		a1 = 0.025		b1 = 0.05	$c_{1} = 0.2$		
$x_1 = 0$ $x_2 = 0.5$	rcal = 0.103	$a_1 = 0.025$ $a_2 = 0.02$		b1 = 0.03 b2 = 0.03	$c_1 = 0.2$ $c_2 = 0.2$		
$x_2 = 0.0$	<i>acai</i> = 0.105	u2 := 0.02		02 - 0.05	C2 - 0.2		
$at := (a^2 - a)$	$(xcal-x1) \cdot \frac{(xcal-x1)}{1} + a1 = 0.024$	b	$t := (b_2 - b_3)$	(xcal-x1)	$\frac{)}{+b1} = 0.046$		
	(x2-x1)		. ($(x^2 - x^1)$			
$ct \coloneqq (c2 - c1)$	$) \cdot \frac{(xcal - x1)}{(x2 - x1)} + c1 = 0.2$						
*Dotación do cod	$b \cdot h^3$	-0.007 m^4 -0.007 m^4	Lvi	$ga \cdot My = 0.0006$	mad		
Rotación de ceu	12 = 12	-0.007 11 0	<i>g</i> 6.	$Ec \cdot Ic$	144		
*Rotación v mor	θ ento último: $\theta u := \theta u + a t$	$t = 0.025$ rad λ	Au :- M	$u + \frac{0.05 \cdot Ec \cdot Ic \cdot}{0.05 \cdot Ec \cdot Ic \cdot}$	$0.3 \cdot (\theta u - \theta y)$	- 30890 05	26 kaf.m
Rotación y món	v = v g + u	1 = 0.020 rud 10	1 a - 11	1	m	- 50050.02	20 Ngj - M
*Rotación y mom	ento residual: $\theta r := \theta y + bt$	$= 0.047 \ rad$ N	Ir := My	$y \cdot ct = 5105.052$	kgf∙m		
*Criterios de acep	otación:						
					IO	LS	CP
	(2.0.25)	0.025	0.05	0.2		b	<i>c</i>
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
≥0.5 ℃	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
x1 := 0	xcal = 0.103	a1 = 0.010		$b1 \coloneqq 0.025$	c1 := 0.05		
x2 := 0.5		a2 := 0.005		b2 := 0.02	c2 = 0.03		
	(mal, m1)			(real m	1)		
<i>IO</i> :=	$(a2-a1)\cdot \frac{(acai-x1)}{(x2-x1)}+a1$	= 0.009 L	$S \coloneqq (b2)$	$(-b1) \cdot \frac{(acai - x)}{(x^2 - x)}$	$\frac{b}{b} + b1 = 0.024$		
	((xcal - x)	1)		
		C	$CP \coloneqq (c2)$	$(x^2-c^1)\cdot \frac{(x^2-c^2)}{(x^2-c^2)}$	$\frac{c_{j}}{c_{j}} + c_{1} = 0.046$		
				(,		

$D \coloneqq -(fy \cdot (A's \cdot d' \cdot$	$+As \cdot d)) = -12.054 tc$	onnef • m	$\mathbf{D} + \sqrt{\mathbf{D}^2}$	² 4 4 D	-		
			$c \coloneqq \frac{-B + \sqrt{B}}{2}$	$-4 \cdot A \cdot D$ $\cdot A$	-=9.273 <i>cm</i>	Profundidad neutro	l del eje
- Al obtener la profundid	ad del eje neutro, se veri	fica que el acero s	superior a comp	resión no ha	cedido:		
$arepsilon's \coloneqq rac{arepsilon y ullet (c-d')}{d-c} =$	= 0.00029 f's := 1	$Es \cdot \varepsilon's = 584.00^\circ$	$7 \frac{kgf}{cm^2}$	$\mathbf{if}(arepsilon's\!<\!arepsilon y)$, "ok" , "no cump	ole") = "ok"	
- Además verificamos qu	e el concreto tenga un co	omportamiento ela	ástico:				
$fclímite \coloneqq 0.70 \cdot f'_{0}$	$c = 147 \frac{kgf}{cm^2}$ Esfuer	zo límite de com	portamiento elás	stico del con	creto		
$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{(d-c)} = 0.00$	0063 if (εc	$< \varepsilon c u$, "ok", "N	o cumple) = c	"ok"			
$fc \coloneqq Ec \cdot \varepsilon c = 137.7$	$52 \frac{kgf}{cm^2}$ if $(fc \cdot$	< fclimite, "ok"	", "no cumple'	")="ok"			
	CIII						
- Se define la resultante c $fc \cdot c \cdot b$	le tracción y compresión	:		<i>a u</i>			
$Cc \coloneqq \frac{1}{2} = 19.$.16 tonnef T	$As \cdot fy = 24.94$	4 tonnef	$Cs \coloneqq A'$	$s \cdot f's = 5.78$ ton	nef	
- Por último obtenemos l εy	a curvatura cedente y el 1	momento cedente	:				
$\phi y \coloneqq \frac{g}{d-c} = 0.006$	834 <u>—</u> m						
$My \coloneqq Cc \cdot \frac{2}{2} \cdot c + C$	$S \cdot (c - d') + T \cdot (d - c)$	= 9094.613 kg	f•m				
3							
5. DIAGRAMA MOMENTO) - ROTACIÓN (Usando	las tablas ASCE f'_{o}	$41-13)_{fb}$		10	A'	'a
- Primera columna: f	$b \coloneqq 6000 \frac{\mathbf{kgj}}{\mathbf{cm}^2} \qquad \rho b$	$:= 0.85 \cdot \frac{fc}{fy} \cdot \beta 1$	$1 \cdot \left(\frac{fb}{fb + fy}\right) =$	0.0 <mark>2</mark> 1 /	$o \coloneqq \frac{As}{b \cdot d} = 0.005$	$\rho' \coloneqq \frac{A}{b \cdot}$	$\frac{s}{d} = 0.008$
$\frac{\rho - \rho'}{\rho} = -0.155$					Entrar en la prim	iera <mark>colum</mark> na	
ρο		2		dba^2			
Se usó estribos de 3/8	8" en dos ramas: $dbe :=$	$\frac{3}{8}$ <i>in</i> = 0.953 <i>c</i>	$m \qquad Ae := -$	$\frac{1}{4} = 0$	$.713 \ cm^2 \qquad Av$	$a \coloneqq 2 \cdot Ae = 1$	$425 \ cm^2$
Separación entre estr $Av \cdot fy \cdot d$	ibos: $sep \coloneqq 10 \ cm$	TZ	$2 \cdot My$	4			
$Vs \coloneqq \underbrace{sep} \equiv 2$	23941.928 kgj	vaciuanie ≔ -	Lviga = 4.724	ionnej			
- Segunda columna: ii	$E\left(sep \leq \frac{d}{3}, \text{``Confor.''}, \right)$	"No confor.")=	= "Confor."				
if (V.	$s > \frac{3}{4} \cdot Vactuante$, "Co	onfor." , "No co	n for." = "Con	for."	Entrar en la segu	nda columna	1
	tuante ,	4.724	1 1000	1.005			
- Tercera columna: $b \cdot d$	${\cdot \sqrt{f'c}}$ $xcal := -$ 0.	$30 \cdot 0.40 \cdot \sqrt{210}$	$ \cdot 1.1926 =$ $\cdot 10$	= 1.025	Entrar en la terce	ra columna	
		a	b	c			
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
$at \coloneqq 0.025$	bt := 0.05	$ct \coloneqq 0.2$					
*D / '/ 1 1 '	$b \cdot h^3$	0.000.4	Lviga•N	<i>Iy</i> 0.001			
*Rotacion de cedencia:	$Ic \coloneqq 12$	$0.002 m^{-1}$	$\theta y \coloneqq -6 \cdot Ec \cdot I$	$\frac{-}{c} = 0.001$	rad		
*Rotación y momento úl	timo: $\theta u \coloneqq \theta y + at$	=0.026 rad	$Mu \coloneqq My + \frac{0}{2}$	$05 \cdot Ec \cdot Ic$	$\frac{\cdot 0.3 \cdot (\theta u - \theta y)}{m}$	= 10951.604	kgf·m
*Datasión y momento no	aidual. On - Oa + ht.	-0.051 mad	Mm - Mai at -	1010 099	haf m		
*Criterios de acentación:	sidual: $\partial T := \partial y + \partial t$	= 0.051 raa	$MT := MY \cdot Ct =$	= 1818.923	kgj•m		
ententos de aceptación.					ΙΟ	LS	CP
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
			$IO \coloneqq 0.$	010	$LS \coloneqq 0.025$	CP	= 0.05

- 11 00	tener la profun $\varepsilon u \cdot (c - d')$	didad del eje neutro, se	verifica que el acero	superior a co	mpresion no na c		\ \	
$\varepsilon's$	$= \frac{d}{d-c}$	f' = 0.00052 f'	$s \coloneqq \varepsilon' s \cdot Es = 1040.$	$774 \frac{\mathbf{m}^{2}}{\mathbf{cm}^{2}}$	$\mathbf{if}(\varepsilon's < \varepsilon$	xy, "ok", "No c	umple") =	"ok"
- Lueo	o, se define la r	esultante de tracción y	compresión:					
Cc1:=	0, 30 define far 0.85 • $f'_{c} • (c - 1)$	$-m$) $\cdot h = 6.775 tonn$	e $Cc^2 = 0.8$	$5 \cdot f' \cdot \frac{m}{m} \cdot h$	-28.61 tonne	$f C_s := A'_s$	$f'_{8} = 6.18$	onnef
001-	0.00 • j c • (c	<i>m</i>) • 0 = 0.110 com	cj 0.0	2	- 20.01 tonne	$T := A_{2} \cdot f$	y = 41566	tonnof
Porú	ltimo se obtien	e la curvatura cedente v	, el momento cedente			$I := A3 \cdot J$	y - 41.000	tonnej
- FOI u	εy	1 0075	er momento cedente					
ϕy	$=\frac{1}{(d-c)} = 0$	$\frac{10075}{m}$						
M_{2}	$y \coloneqq Cc1 \cdot \left(d - d\right)$	$\frac{(c-m)}{2}$ + $Cc2 \cdot \left(d - \frac{c}{2}\right)$	$-c+\frac{2\cdot m}{3}+Cs\cdot ($	(d-d') = 148	393.431 kgf • m	,		
5 DIA			(Haanda laa tablaa A	SCE 41 12)				
J. DIA		kgf	f'c	fb	-0.021	As = 0.008	A	's _ 0 00
- Prime	era columna:	$J v \approx 0000 \frac{1}{cm^2}$	$\rho v = 0.85 \cdot \frac{fy}{fy} \cdot \rho$	fb + fy	= 0.021 p	$\frac{b \cdot d}{b \cdot d} = 0.008$	$\rho \coloneqq \frac{1}{b}$	$-\frac{1}{\cdot d} = 0.00$
	$\rho - \rho'$. 155				F.4	•	
	$al := \frac{1}{\rho b} = 0$	J.155				Entrar en la p	orimera con	imna
			. 3		$\pi \cdot dbe^2$			
Se	usó estribos de	d = 3/8" en dos ramas: $d = d$	$be \coloneqq -\frac{in}{8} = 0.953$	cm $Ae =$	== 0.7	$713 \text{ cm}^2 \text{ Av}$	$= 2 \cdot Ae =$	1.425 <i>cm</i>
Sej	paración entre e $Av \cdot fu \cdot d$	estribos: $sep \coloneqq 10$ cm	,	$2 \cdot M u$				
Vs	$=\frac{110 \text{ Jg } \text{ a}}{\text{sen}}$	=23941.928 kgf	Vactuante :=	$\frac{2}{L_{viag}} = 7.7$	737 tonnef			
	sep	(d		шыда				
- Segu	nda columna:	if $ sep \leq \frac{a}{2}$, "Confe	or.", "No confor."	= "Confor."				
			/					
		$\mathbf{if}\left(Vs > \frac{3}{4} \cdot Vactua\right)$	nte, "Confor.", "N	o confor.") =	= "Confor."	Entrar en la s	egunda colu	ımna
- Terce	ra columna:	$y \coloneqq \frac{Vactuante}{Vactuante}$	7.73	7 • 1.	.1926 = 1.678	Entrar en la t	ercera colui	mna
		$b \cdot d \cdot \sqrt{f'c}$	0.30 • 0.40 • 1	$\sqrt{210 \cdot 10}$				
			a	b	c			
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
≥0.5	С	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
r1 - 0		real = 0.155	a1 = 0.02	5 <i>h</i>	01 - 0.05	c1 = 0.2		
$x_1 = 0$ $x_2 = 0$	5	<i>xcut</i> = 0.100	$a_1 = 0.02$ $a_2 = 0.02$	0 0	2 = 0.03	$c_{1} = 0.2$		
at	$=(a^2-a^1)$	(xcal-x1) + $a1-0$	0.02	bt = (b2 - b)	(xcal - x1)	+b1 = 0.044		
ui	$(u_2 \ u_1)^{1}$	(x2-x1) + $a1=0.$	020	01:-(02 0	$(x^2 - x^1)$	- 01 - 0.044		
ct	$=(c2-c1)\cdot (c2-c1)$	$\frac{(xcal-x1)}{(x2-x1)} + c1 = 0.2$						
		b•ł	, ³	Lviao	• Mu			
*Rotac	ción de cedenci	a: $Ic := \frac{1}{12}$	$\frac{1}{2} = 0.002 \ m^4$	$\theta y \coloneqq \frac{1 \circ i g \alpha}{6 \cdot E \alpha}$	$c \cdot Ic = 0.002$	rad		
*Rotac	ción y momento	o último: $\theta u \coloneqq \theta y$	+ at = 0.025 rad	$Mu \coloneqq My +$	$-\frac{0.05 \cdot Ec \cdot Ic \cdot}{2}$	$0.3 \cdot (\theta u - \theta y)$	= 16635.10	9 kgf • m
					n	n		
*Rotac	ción y momento	p residual: $\theta r \coloneqq \theta y$ -	<i>bt</i> = 0.046 rad	$Mr := My \cdot d$	ct = 2978.686 k	gf∙m		
*Criter	rios de aceptaci	ón:						
						IO	LS	CP
						a	b	c
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
≥0.5	С	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
$x_1 := 0$		x cal = 0.155	$a_1 := 0.01$	0 1	01 = 0.025	c1 = 0.05		
$x2 \coloneqq 0$.5		a2 := 0.00	5 h	02 = 0.02	c2 := 0.03		
		$-a1)$, $\frac{(xcal-x1)}{xcal-x1}$	$a_1 = 0.008$	LS := (h2 -)	(xcal-x1)) + b1 = 0.023		
	$IO := \{a\}$		······································	20 102	· - 1 / · · ·	101 - 0.040		
	$IO \coloneqq (a2)$	$(x_2 - x_1)^{-1}$			(x2-x1)			
	$IO \coloneqq (a2)$	$\frac{(x^2 - x^1)}{(x^2 - x^1)}$	$c_1 = 0.044$		(x2-x1)			
	$IO \coloneqq (a2)$ $CP \coloneqq (c2)$	$(x^{2}-x^{1})\cdot \frac{(x^{2}-x^{1})}{(x^{2}-x^{1})}+$	-c1 = 0.044		(x2-x1)			

	- Determinando el $c^2 \left(\frac{Ec \cdot \varepsilon y \cdot b}{2} \right)$	eje neutro de la secció $2 + c \cdot (f u \cdot (As + A's))$	n: s)) – $fu \cdot (A's \cdot d' + A's \cdot d')$	$(As \cdot d) = 0$	A·	$c^2 + B \cdot c + I$	D =0	
))) 55 (
	$A \coloneqq \frac{Ec \cdot \varepsilon y \cdot c}{2}$	$-=684.718 \frac{tonnef}{m}$		$B \coloneqq fy \cdot (As + A)$	A's) = 49.879 to	nnef		
	D. (f. (A	(L	1.002.4	$-B + \gamma$	$B^2 - 4 \cdot A \cdot D$	0.669	D., C., 1: 1, 1	1.1
	$D \coloneqq -(Jy \cdot (A))$	$(s \cdot a + As \cdot a)) = -1$	1.223 tonnej • m	<i>c</i> :=	2•A	= 9.008 <i>C</i> M	neutro	del eje
	- Al obtener la pro	fundidad del eje neutro	o, se verifica que el ac	cero superior a co	mpresión no ha ce	dido:		
	$\varepsilon's \coloneqq \frac{\varepsilon g \cdot (c-d)}{d-d}$	$\frac{(a)}{c} = 0.00032$	$f's \coloneqq Es \cdot \varepsilon's = 64$	$6.402 \frac{\mathbf{ky}}{\mathbf{cm}^2}$	$\mathbf{if}(\varepsilon's < \varepsilon_{2})$	y, "ok", "no c	cumple") = "o	k"
	- Además verificar	nos que el concreto ter	nga un comportamien	to elástico:				
	fclimite := 0.	$70 \cdot f'c = 147 \frac{kgf}{cm^2}$	Esfuerzo límite de concreto	comportamiento	elástico del			
	$\varepsilon c := \frac{\varepsilon y \cdot c}{(d-c)}$	= 0.00067	$\mathbf{if}(\varepsilon c < \varepsilon c u, \mathbf{``ok''})$	", "No cumple")	="ok"			
	$fc \coloneqq Ec \cdot \varepsilon c =$	$145.502 \frac{\textit{kgf}}{\textit{cm}^2}$	$\mathbf{if}(fc < fclimite,$	"ok", "no cump	ole")="ok"			
	- Se define la resul	tante de tracción y con	npresión:					
	$Cc \coloneqq \frac{fc \cdot c \cdot b}{2}$	-=21.101 tonnef	$T \coloneqq As \cdot f_{2}$	y=24.94 tonne	f Cs	$= A's \cdot f's = 3$	3.838 tonnef	
	- Por último obten	emos la curvatura cede	ente y el momento ceo	dente:				
	$\phi y \coloneqq \frac{\varepsilon y}{d \varepsilon} =$	$0.006923 \frac{1}{m}$						
	<i>a</i> - <i>c</i>							
	$My \coloneqq Cc \cdot \frac{1}{3}$	$\cdot c + Cs \cdot (c - d') + T$	$\cdot (d-c) = 9103.851$	kgf∙m				
5 Г	DIAGRAMA MOM	ΙΕΝΤΟ - ΒΟΤΔΟΙΌΝ	(Usando las tablas A	SCF 41-13)				
J. L	- Primera columna	$: fb := 6000 \frac{kgf}{kgf}$	$-\rho b \coloneqq 0.85 \cdot \frac{f' c}{f'}$	$\frac{c}{2} \cdot \beta 1 \cdot \left(\frac{fb}{fb} \right)$	$= 0.021 \rho =$	$=\frac{As}{}=0.00$	5 $\rho' \coloneqq \frac{A'}{2}$	s = 0.005
	,		, fi	f = (fb + fy))	$b \cdot d$, b•	d
	$\frac{\rho - \rho}{\rho b} = 0$					Entrar e	n la primera c	olumna
	Se usó estribos	s de 3/8" en dos ramas:	$dbe \coloneqq \frac{3}{n} = 0.9$	53 cm Ae∷	$=\frac{\boldsymbol{\pi} \cdot dbe^2}{=0.72}$	$13 \text{ cm}^2 A$	$v \coloneqq 2 \cdot Ae = 1$.425 cm^2
	Separación ent	re estribos: $sep \coloneqq 10$	cm 8	0.14	4			
	$Vs \coloneqq \frac{Av \cdot fy}{sep}$	<u>d</u> =23941.928 kgf	Vactuant	$e \coloneqq \frac{2 \cdot My}{Lviga} = 4.7$	729 tonnef			
	- Segunda columna	a: $\mathbf{if}\left(sep \le \frac{d}{3}, \text{``Compare}\right)$	onfor.", "No confoi	() = "Confor."				
		$\mathbf{if}\left(Vs > \frac{3}{4} \cdot Vactuar$	nte, "Confor." , "N	o confor." = "C	Confor."	Entrar e	n la segunda c	olumna
	- Tercera columna:	Vactuante 1 1926	3 rcal =	4.729	-11926 - 1026	3 Entrar e	n la tercera	
		$b \cdot d \cdot \sqrt{f'c}$	0.30•	$0.40 \cdot \sqrt{210 \cdot 10}$	-• 1.1320 - 1.020	columna		
≤0.0	С	≤3 (0.25)	a 0.025	b 0.05	с 0.2	0.010	0.025	0.05
	$at \coloneqq 0.025$	bt := 0.05	$ct \coloneqq 0.2$					
			$h \cdot h^3$	Lviao	• Ma			
	*Rotación de cede	ncia: Ic := -	$\frac{60}{12} = 0.002 \ m^4$	$\theta y \coloneqq \frac{E \cdot i g d}{6 \cdot E d}$	$\frac{1}{c \cdot Ic} = 0.001 \ r$	ıd		
	*Rotación y mome	ento último $\theta u \coloneqq$	$\theta y + at = 0.026$ rad	$d \qquad Mu := My +$	$\frac{0.05 \cdot Ec \cdot Ic \cdot 0}{m}$	$.3 \cdot (\theta u - \theta y)$	-=10960.842	$kgf \cdot m$
	*Rotación y mome	ento residual: $\theta r := 0$	$\theta y + bt = 0.051$ rad	$Mr := My \cdot d$	$ct = 1820.77 \ kg$	$f \cdot m$		
	*Criterios de acept	tación:						
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	<i>IO</i> 0.010	$LS_{0.025}$	$CP_{0.05}$
	$IO \coloneqq 0.010$	$LS \coloneqq 0.025$	CP := 0.05	5				

$A \coloneqq \frac{Ec \cdot \varepsilon y \cdot b}{1 - \varepsilon y \cdot b}$	$= 684.718 \frac{tonnef}{c}$	<i>H</i>	$B \coloneqq fy \cdot (As + A's)$	= 66.505 tor	nef		
2	m		$D + \sqrt{D^2}$	<u> </u>			
$D \coloneqq -(fy \cdot (A's))$	$(s \cdot d' + As \cdot d)) = -12$	2.054 tonnef ∙ m	$c \coloneqq \frac{-B + \sqrt{B}}{2}$	$\frac{-4 \cdot A \cdot D}{A} =$	9.273 <i>cm</i> F	Profundidad ieutro	del eje
- Al obtener la profu	ndidad del eje neutro	, se verifica que el ace	ro superior a compr	esión no ha ce	dido:		
$\varepsilon's \coloneqq \frac{\varepsilon y \cdot (c-c)}{d-c}$	$\frac{d')}{d'} = 0.00029$	$f's \coloneqq Es \cdot \varepsilon's = 584.$	$\frac{kgf}{cm^2}$	$ ext{if}(arepsilon's\!<\!arepsilon y$, "ok", "no cum	nple") = "o	k"
- Además verificam	os que el concreto ter	iga un comportamiento	elástico:				
$fclimite \coloneqq 0.76$	$0 \cdot f'c = 147 \frac{kgf}{cm^2}$	Esfuerzo límite de co concreto	omportamiento elás	tico del			
$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{(d-c)} =$	0.00063	$\mathbf{if}(\varepsilon c < \varepsilon c u, \mathbf{``ok''},$	"No cumple") = "	ok"			
$fc \coloneqq Ec \cdot \varepsilon c = 1$	$37.752 \frac{kgf}{cm^2}$	$\mathbf{if}(fc < fclimite, "content of the second secon$	ok", "no cumple")="ok"			
So dofino lo nogulti	uta da tuanaión y any						
- Se define la resulta	- 10 16 toppof	$T = A_{2} f_{2}$	- 24.04 tomm of	Car A	10. f/a = 5 79 to	nnof	
2	– 19.10 <i>connej</i>	$I := AS \bullet J Y$	– 24.94 <i>tonnej</i>	Cs := A	1 s• j s = 5.78 to	nnej	
- Por último obtener εy	nos la curvatura cede	nte y el momento cede	nte:				
$\phi y \coloneqq \frac{1}{d-c} \equiv 0$	$\frac{1006834}{m}$						
$My \coloneqq Cc \cdot \frac{2}{3} \cdot c$	$c + Cs \cdot (c - d') + T$	(d-c) = 9094.613	kgf • m				
5 DIAGRAMA MO	MENTO - ROTACI	ÓN (Usando las tablas	ASCE 41-13)				
- Primera columna:	$fh := 6000 \frac{kgf}{kgf}$	$ab := 0.85 \cdot \frac{f'c}{f'c}$	$\left(\frac{fb}{fb}\right) = 0$) 021 <i>a</i> :-	As = 0.005	a' := A's	3 0
- I Innera columna.	$\int dt = 0000 \frac{1}{cm^2}$	$po = 0.85 \cdot \frac{1}{fy}$	$\left(\frac{fb+fy}{fb+fy}\right)^{-1}$	p.021 - p	$\frac{1}{b \cdot d} = 0.005$	$p = \frac{b \cdot a}{b \cdot a}$	$\frac{l}{d} = 0.0$
$\frac{\rho - \rho'}{2} = -0.15$	5				Entrar en la pri	mera colur	nna
ho b					•		
Se usó estribos (de 3/8" en dos rmas:	$dbe \coloneqq \frac{3}{n} = 0.953$	$Ae := \frac{\pi}{2}$	$\frac{\cdot dbe^2}{2} = 0.71$	$3 \ cm^2 Av =$	$= 2 \cdot Ae = 1$.425 сп
Separación entre	e estribos: $sep \coloneqq 10$	cm 8		4			
$Vs \coloneqq \frac{Av \cdot fy \cdot c}{sep}$	<u>d</u> =23941.928 kgf	Vactuante	$:= \frac{2 \cdot My}{Lviga} = 7.611$	tonnef			
- Segunda columna:	$ \mathbf{if}\left(sep \leq \frac{d}{3}, \text{``Compare}\right) $	onfor." , "No confor.'	'') = "Confor."				
	$\mathbf{if}\left(Vs > \frac{3}{4} \cdot Vact$	tuante, "Confor.", "	No confor.") = " C	Confor."	Entrar en la seg	gunda colur	nna
Taraara aalumna	Vactuante	7.6	11 1.105	06 - 1.651	Entrop on la tor	aara aalum	n 0
- Tercera columna.		xcui :		0 = 1.001	Entrar en la ter	cera colum	112
	$b \cdot d \cdot \sqrt{f'c}$	$0.30 \cdot 0.40 \cdot$	$\sqrt{210\cdot 10}$				
≤0.0 C	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$	$0.30 \cdot 0.40 \cdot a$ 0.025	$\sqrt{210 \cdot 10}$ b 0.05	c 0.2	0.010	0.025	0.05
≤0.0 C at := 0.025	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ $bt := 0.05$	$0.30 \cdot 0.40 \cdot a$ 0.025 ct := 0.2	$\sqrt{210\cdot 10}$ b 0.05	c 0.2	0.010	0.025	0.05
≤0.0 C at := 0.025	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ bt := 0.05	$0.30 \cdot 0.40 \cdot a$ 0.025 $ct \coloneqq 0.2$ $b \cdot b^{3}$	$\sqrt{210 \cdot 10}$ b 0.05	c 0.2	0.010	0.025	0.05
≤0.0 C at := 0.025 *Rotación de cedeno	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ bt := 0.05 cia: $Ic := -$	$0.30 \cdot 0.40 \cdot a$ 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $ct \approx 0.002 \ m^{4}$	$ \frac{\sqrt{210 \cdot 10}}{b} $ $ \frac{b}{0.05} $ $ \frac{\theta y := \frac{Lviga \cdot M}{6 \cdot Ec \cdot H} $	$\frac{c}{0.2}$	0.010 vd	0.025	0.05
≤0.0 C at := 0.025 *Rotación de cedeno	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ bt := 0.05 cia: $Ic := -$	$0.30 \cdot 0.40 \cdot a$ 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $12 = 0.002 \ m^{4}$	$ \frac{\sqrt{210 \cdot 10}}{b} $ $ \frac{b}{0.05} $ $ \frac{\theta y := \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ia} $ $ 0.1 $	$\frac{c}{0.2}$ $\frac{fy}{c} = 0.001 \ ra$ $05 \cdot Ec \cdot Ic \cdot 0$	0.010	0.025	0.05
≤0.0 C at := 0.025 *Rotación de cedeno *Rotación y momen	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ bt := 0.05 cia: $Ic := -$ to último: $\theta u :=$	$0.30 \cdot 0.40 \cdot a$ 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $b \cdot h^{3}$ $dy + at = 0.026 \ rad$	$\sqrt{210 \cdot 10}$ b 0.05 $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ic}$ $Mu \coloneqq My + \frac{0.0}{2}$	$\frac{c}{0.2}$ $\frac{ly}{c} = 0.001 \ rac{100}{c}$ $\frac{05 \cdot Ec \cdot Ic \cdot 0}{m}$	0.010	0.025 10951.604	0.05 kgf • n
≤0.0 C at := 0.025 *Rotación de cedeno *Rotación y momen *Rotación y momen	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ bt := 0.05 cia: $Ic := -$ to último: $\theta u :=$ to residual: $\theta r := -$	$0.30 \cdot 0.40 \cdot$ a 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $12 = 0.002 \ m^{4}$ $\theta y + at = 0.026 \ rad$ $\theta y + bt = 0.051 \ rad$	$\sqrt{210 \cdot 10}$ b 0.05 $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ia}$ $Mu \coloneqq My + \frac{0.0}{2}$ $Mr \coloneqq My \cdot ct \equiv$	$\frac{c}{0.2}$ $\frac{ly}{c} = 0.001 \ ra$ $\frac{05 \cdot Ec \cdot Ic \cdot 0}{m}$ $1818.923 \ kg$	0.010 $\frac{1}{2} \cdot (\theta u - \theta y) = f \cdot m$	0.025	0.05 kgf • n
≤0.0 C at := 0.025 *Rotación de cedeno *Rotación y momen *Rotación y momen *Criterios de acepta	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ $bt := 0.05$ cia: $Ic := -$ to último: $\theta u :=$ to residual: $\theta r := -$ ción:	$0.30 \cdot 0.40 \cdot$ a 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $12 = 0.002 \ m^{4}$ $\theta y + at = 0.026 \ rad$ $\theta y + bt = 0.051 \ rad$	$\sqrt{210 \cdot 10}$ b 0.05 $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ia}$ $Mu \coloneqq My + \frac{0.0}{2}$ $Mr \coloneqq My \cdot ct \equiv 0$	$\frac{c}{0.2}$ $\frac{ly}{c} = 0.001 \ rac{0}{05 \cdot Ec \cdot Ic \cdot 0}$ $\frac{1818.923 \ kg}{1818.923 \ kg}$	0.010 $3 \cdot (\theta u - \theta y) = f \cdot m$	0.025	0.05 kgf • n
≤0.0 C at := 0.025 *Rotación de cedeno *Rotación y momen *Rotación y momen *Criterios de acepta	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ bt := 0.05 cia: $Ic := -$ to último: $\theta u := -$ to residual: $\theta r := -$ ción:	$0.30 \cdot 0.40 \cdot$ a 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $12 = 0.002 \ m^{4}$ $\theta y + at = 0.026 \ rad$ $\theta y + bt = 0.051 \ rad$	$\sqrt{210 \cdot 10}$ b 0.05 $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ia}$ $Mu \coloneqq My + \frac{0.0}{2}$ $Mr \coloneqq My \cdot ct \equiv 0$	$\frac{c}{0.2}$ $\frac{Iy}{c} = 0.001 \ ra$ $\frac{05 \cdot Ec \cdot Ic \cdot 0}{m}$ $1818.923 \ kg$	0.010 $\frac{3 \cdot (\theta u - \theta y)}{f \cdot m} = IO$	0.025 10951.604 <i>LS</i>	0.05 kgf • m CP
≤0.0 C at := 0.025 *Rotación de cedeno *Rotación y momen *Rotación y momen *Criterios de acepta ≤0.0 C	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ $bt := 0.05$ cia: $Ic := -$ to último: $\theta u :=$ to residual: $\theta r := -$ ción: $\leq 3 (0.25)$	$0.30 \cdot 0.40 \cdot$ a 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $= 0.002 \ m^{4}$ $\theta y + at \equiv 0.026 \ rad$ $\theta y + bt \equiv 0.051 \ rad$ 0.025	$\sqrt{210 \cdot 10}$ b 0.05 $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ia}$ $Mu \coloneqq My + \frac{0.0}{2}$ $Mr \coloneqq My \cdot ct \equiv$ 0.05	$\frac{c}{0.2}$ $\frac{fy}{c} = 0.001 \ ra$ $\frac{05 \cdot Ec \cdot Ic \cdot 0}{m}$ $1818.923 \ kg$ 0.2	0.010 $\frac{3 \cdot (\theta u - \theta y)}{f \cdot m} = \frac{IO}{0.010}$	0.025 10951.604 <i>LS</i> 0.025	0.05 kgf • m <u>CP</u> 0.05
≤0.0 C at := 0.025 *Rotación de cedeno *Rotación y momen *Rotación y momen *Criterios de acepta ≤0.0 C	$b \cdot d \cdot \sqrt{f'c}$ $\leq 3 (0.25)$ $bt := 0.05$ cia: $Ic := -$ to último: $\theta u :=$ to residual: $\theta r := -$ ción: $\leq 3 (0.25)$	$0.30 \cdot 0.40 \cdot$ a 0.025 $ct \coloneqq 0.2$ $b \cdot h^{3}$ $12 = 0.002 \ m^{4}$ $\theta y + at \equiv 0.026 \ rad$ $\theta y + bt \equiv 0.051 \ rad$ 0.025	$\sqrt{210 \cdot 10}$ b 0.05 $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot Ic}$ $Mu \coloneqq My + \frac{0.0}{2}$ $Mr \coloneqq My \cdot ct \equiv$ 0.05	$\frac{c}{0.2}$ $\frac{ly}{c} = 0.001 \ rac{0}{0}$ $\frac{05 \cdot Ec \cdot Ic \cdot 0}{m}$ $1818.923 \ kg$ 0.2 $C := 0.010$	0.010 $\frac{3 \cdot (\theta u - \theta y)}{f \cdot m} =$ $\frac{IO}{0.010}$ $LS \coloneqq 0.025$	0.025 10951.604 <i>LS</i> 0.025 <i>CP</i> :	0.05 $kgf \cdot m$ CP 0.05 $= 0.05$

$\varepsilon's \coloneqq \frac{\varepsilon g}{d}$	$\frac{a}{c} = 0.00052$ j	$f's \coloneqq \varepsilon's \cdot Es \equiv 1040.$	$774 \frac{109J}{m^2}$	$\mathbf{if}(\varepsilon's)$	< arepsilon y , "ok" , "No cu	.1mple") = "	ʻok"
u .	C		Cin				
- Luego, se defin	e la resultante de tracción y	compresión:					
$Cc1 \coloneqq 0.85$.	$f'c \cdot (c-m) \cdot b = 6.775 t$	connef $Cc2 \coloneqq 0.8$	$35 \cdot f'c \cdot \underline{-}_2$	b = 28.61 tor	$cs := A's \cdot$	f's = 6.18 t	onnef
D (1)					$T \coloneqq As \cdot fg$	y = 41.566	tonnef
- Por ultimo se ol	otiene la curvatura cedente	y el momento cedente	e:				
$\phi y \coloneqq \overline{(d-c)}$	= 0.0075 - m						
Mu = Cc1	$\binom{d}{d-(c-m)} + Cc^2 \cdot \binom{d}{d}$	$-c^{+} (2 \cdot m) + C_{s,s}$	(d - d') - 14	803 131 haf			
My = Ocr	$\left(\frac{a}{2}\right) + 0.021 \left(\frac{a}{2}\right)$	$\left(\frac{-2+3}{3}\right)$ + $\left(\frac{-2}{3}\right)$	(<i>u</i> - <i>u</i>) = 14	035.451 kgj	- 116		
5. DIAGRAMA MO	MENTO - ROTACIÓN (U	sando las tablas ASCI	E 41-13)				
- Primera column	a: $fb \coloneqq 6000 \frac{kgf}{m}$	$\rho b \coloneqq 0.85 \cdot \frac{f'c}{c} \cdot \beta$	$31 \cdot \left(\frac{fb}{fb} \right)$	- = 0.021	$\rho \coloneqq \frac{As}{m} = 0.008$	$\rho' \coloneqq \frac{A}{A}$	$\frac{s}{-1} = 0.00$
		fy f	(fb+fy))	$b \cdot d$, b.	d
$xcal \coloneqq \frac{\rho - \rho}{r}$	-=0.155				Entrar en la prim	era column	a
ρb							
Se usó estribo	os de 3/8" en dos ramas:	$lbe \coloneqq \frac{3}{2}$ in = 0.953	cm Ae	$=\frac{\pi \cdot dbe^2}{4}=$	$0.713 \ cm^2 \qquad Av$	$= 2 \cdot Ae = 2$	1.425 cn
Separación e	ntre estribos: $sep \coloneqq 10$ cr	n 8	0.14	4			
$Vs \coloneqq \frac{Av \cdot fy}{\cos \theta}$	<u>/·d</u> =23941.928 kgf	$Vactuante \coloneqq$	$=\frac{2 \cdot My}{L_{\text{min}}} = 12$	2.463 tonnej			
sep)	Lviga				
- Segunda colum	na: if $sep \le \frac{a}{3}$, "Conf	or.", "No confor."	= "Confor."	,			
		/					
	$if Vs > \frac{3}{4} \cdot Vactuante$	e, "Confor.", "No c	onfor." = "	Confor."	Entrar en la segu	nda column	a
	Vactuante	12.463	,				
- Tercera column	a: $y := \frac{1}{b \cdot d \cdot \sqrt{f'a}}$	$0.30 \cdot 0.40 \cdot \sqrt{21}$	• 1.19	26 = 2.703	Entrar en la terce	ra columna	
	<i>0•a•</i> γ <i>jc</i>	0.30 • 0.40 • \ 21	1				
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
≥0.5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
r1 = 0	real = 0.155	a1 = 0.02	5	b1 = 0.05	$c_{1} = 0.2$		
$x_1 = 0$ $x_2 = 0.5$	<i>xcu</i> = 0.105	$a_1 = 0.02$ $a_2 = 0.02$	0	$b_{1} = 0.03$ $b_{2} = 0.03$	$c_{1} = 0.2$ $c_{2} = 0.2$		
		a2 := 0.02	0	020.00	0.2		
at := (a2 - a)	1) $\cdot \frac{(xcal-x1)}{a1} + a1 = 0$.023 bt	:= (b2 - b1)	$\cdot \frac{(xcal-x1)}{}$	+b1 = 0.044		
	(x2-x1)		()	(x2-x1)			
$ct \coloneqq (c2 - c)$	$\cdot \frac{(xcal-x1)}{cal-x1} + c1 = 0.$	2					
((x2-x1)						
*Rotación de ced	encia: $Ic := \frac{b \cdot}{c}$	$\frac{h^3}{m} = 0.002 \ m^4$	$\theta y \coloneqq \frac{Lvig}{dt}$	$\frac{a \cdot My}{2} = 0.00$	1 rad		
	1	2	$6 \cdot E$				
*Rotación y mon	nento último: $\theta u \coloneqq \theta y$	+ at = 0.025 rad	Mu := My	$+ \frac{0.05 \cdot Ec \cdot I}{}$	$\frac{c \cdot 0.3 \cdot (\theta u - \theta y)}{\theta u - \theta y}$ =	= 16635.109	9 kgf • n
					m		
*Rotación y mon	nento residual: $\theta r \coloneqq \theta y$	$+ bt = 0.045 \ rad$	$Mr \coloneqq My$.	ct = 2978.68	6 kgf · m		
*Criterios de ace	ptación:						
					IO	LS	CP
<0.0	<3 (0.25)	0.025	0.05	0.2	a 0.010	b 0.025	C 0.05
>0.5 C	<3 (0.25)	0.025	0.03	0.2	0.005	0.025	0.03
		0.02	0.05	0.2	0.005	0.02	0.05
	x cal = 0.155	a1:=0.01	0	$b1 \coloneqq 0.025$	c1 = 0.05		
$x2 \coloneqq 0.5$		a2 := 0.00	5	b2 := 0.020	c2 = 0.03		
	(xcal - x1)	1 0 000	10 (12	(xcal -	x1)		
10:=	$(a2-a1)\cdot {(x2-x1)}$	+a1 = 0.008	$LS \coloneqq (b2 -$	(x2-x)	$\frac{1}{x1} + b1 = 0.023$		
				×	· ·		
	(xcal - x1) $(xcal - x1)$	1 - 0 - 0.44					

	$A \coloneqq \frac{Ec}{2}$	$\epsilon y \cdot b$	-=684.71	8 tonnef			$B \coloneqq fy$	$\cdot (As + A's) =$	99.758	tonnef		
		2		m				$\sqrt{\mathbf{p}^2}$		-		
	$D \coloneqq -(f)$	$y \cdot (A')$	$s \cdot d' + As$	• $d)) = -15$.46 ton a	nef•m	<i>c</i> :=	$\frac{-B + \sqrt{B^2} - 2}{2 \cdot A}$	-4•A•1 1	-=9.414 cm	Profundida neutro	ad del eje
	- Al obtener l	a prof	undidad de	l eje neutro,	se verifi	ca que el ac	ero sup	erior a compres	sión no h	a cedido:		
	$\varepsilon's := \frac{\varepsilon y}{\varepsilon}$	$\cdot (c -$	$\frac{d'}{d} = 0.00$	014	f's := E	$s \cdot \varepsilon' s = 28$	6.207 -	kgf	if (E'ss	<i>en</i> "ok" "no	cumple") =	"ok"
	0.0.0	d-c	- 0.00	011	J 0 D	0.00-20	0.201	m^2	m (0 5	$\langle cg, ok, no$	cumpic) =	OK
	A demás ver	ificom		oncreto ten		nnortamien	to elásti	201				
				kgf			io clasti		11			
	fclimite	:= 0.7	$(0 \cdot f'c = 1)$	$\frac{47}{cm^2}$	concret	o limite de	compor	amiento elastic	co del			
	$\varepsilon c \coloneqq \frac{\varepsilon y}{(d \cdot d)}$	$\frac{(\cdot c)}{-c} =$	= 0.00065		$\mathbf{if}(\varepsilon c < $	ε <i>cu</i> , "ok"	, "No c	umple") = "o	k"			
	$fc \coloneqq Ec$	$\varepsilon c = 1$	140.503 – c	kgf cm ²	$\mathbf{if}(fc < $	fclímite,	"ok","	no cumple")	="ok"			
	- Se define la	result	ante de tra	cción y com	nresión:							
	fc	$\cdot c \cdot b$	-10.941		presion.	T. A. f.	· - 24 0	1 town of		Con A's f's-	5 000 tomm	£
	<i>CC</i> :	2	- 19.041	ionnej		1 := AS•Jį	<i>j</i> – 24.8	4 ionnej		$Cs = As \cdot js = 1$	5.098 <i>conne</i>	sj
	- Por último s	se obti	ene la curv	atura ceden	te y el mo	omento ced	ente:					
	$\phi y \coloneqq \frac{\varepsilon}{d}$	$\frac{y}{z} = 0$	$0.0069 \frac{1}{1}$									
	<i>a</i> -	- <i>c</i>	m									
	$My \coloneqq Co$	$c \cdot \frac{2}{3}$.	$c + Cs \cdot (c$	$(-d') + T \cdot$	(d-c) =	= 8979.457	kgf∙r	n				
5 D	IAGRAMA	мом	ENTO - RO	οτα σιόνι (Usando l	as tablas A	SCF 41	13)				
J. D	Drimoro col		fb = 6		ob .	-0.85 $f'c$		fb)-0	0.91	a = As = 0.00)5 0'	$\frac{4's}{-0.01}$
		uiiiia.	j0:=0	$\frac{1}{cm^2}$	ρ_0 :	$-0.85 \cdot \frac{1}{fy}$	-• [$\overline{fb+fy} = 0.$	021	$p = \frac{b \cdot d}{b \cdot d} = 0.00$	$b = \frac{p}{b}$	$\overline{} = 0.01$
	$\rho - \rho'$	0.40	20									
	$\frac{\rho b}{\rho b} =$	-0.46	90							Entrar en la pri	mera colum	na
						3		. π.	dbe^2			
	Se usó es	tribos	de 3/8" en	dos ramas:	$dbe \coloneqq$	- n = 0.9	53 cm	$Ae \coloneqq$	= = 0	0.713 cm ² A	$Av \coloneqq 2 \cdot Ae =$:1.425 cm
	Separacio Au	5n entr	te estribos: d	$sep \coloneqq 10$	cm		2.	Mu				
	$Vs \coloneqq$	sen	= 23941	1.928 kgf		Vactuante	$e \coloneqq \frac{-}{Lv}$	= 4.445 t	onnef			
		<i>bep</i>		d				,ga				
	- Segunda co	lumna	$: \mathbf{if}(sep$	$0 \le \frac{a}{3},$ "Col	nfor.", "	No confor	.")="(Confor."				
			$if \left(V_{s} > \frac{3}{2} \right)$	-•Vactuan	te. "Co	nfor." "N	o confo	r.") = "Confo	r."	Entrar en la seo	unda colum	na
			4	v acraan		iiioi. , iv	o como			Entrar en la seg	,unua corum	
	Torooro ooli	Impor	Vactuan	te 👘	al.	4.445	;	11026 - 0	064	Entrop on la tor	aara aalumn	0
		anna.	$b \cdot d \cdot \sqrt{f'}$		0.3	0.040.1	210.1	-1.1320 - 0	.304	Entrai ch la ter	cera column	a
			c a vj		0.0	0 0/10 V		L				
≤0.0	С			≤3 (0.25)		0.025		0.05	0.2	0.010	0.025	0.05
				, í								
	$at \coloneqq$	0.025		bt := 0.05		$ct \approx 0.2$						
				ŀ	$\cdot h^3$			Luiga • Ma	,			
	*Rotación de	ceden	ncia:	$Ic \coloneqq -$	$\frac{10}{12} = ($	$0.002 \ m^4$	θy	$= \frac{E v g u \cdot W g}{6 \cdot F c \cdot L c}$	= 0.001	12 rad		
					14			0.15	E . L	- 0 - 2 (0 · · · · · · · · · · · · · · · · · ·		
	*Rotación y	mome	nto último:	$\theta u \coloneqq \theta$	$\partial y + at =$	= 0.026 ra a	l Mu	$u := My + \frac{0.03}{2}$	5• <i>E</i> c • <i>I</i> c	$(\theta u - \theta y)$	-=10836.44	47 kgf ∙ m
										111		
-	*Rotación y	mome	nto residua	1: $\theta r := \theta$	y + bt =	0.051 rad	Mr	$= My \cdot ct = 1$	795.891	kgf•m		
	*Criterios de	acepta	ación:									
										IO	LS	CP
≤0.0	С			≤3 (0.25)		0.025		0.05	0.2	0.010	0.025	0.05
								IO := 0.01	0	LS := 0.025	C	P := 0.05
								10 - 0.01		1.5 - 0.020		0.00

$$A_{+} = \frac{F_{c} \cdot cy}{2} = 681.718 \frac{tonnef}{m} \qquad B = fy \cdot (A + A's) = 99.758 tonnef$$

$$D = -\left[(y \cdot (A's + d' + As + d)) = -29.431 tonnef \cdot m \qquad c = \frac{-B + \sqrt{R^{2} - 4 + A \cdot D}}{2 \cdot A} = 14.69 \text{ cm} \qquad \text{Polyndiald del eje} \\ c = (a + \sqrt{R^{2} - 4 + A \cdot D}) = -20.431 tonnef \cdot m \qquad c = \frac{-B + \sqrt{R^{2} - 4 + A \cdot D}}{2 \cdot A} = 14.69 \text{ cm} \qquad \text{Polyndiald del eje} \\ c = \frac{C + C - d}{d - c} = 0.0008 \qquad f = a + 2b + c + a + 171.183 \qquad \frac{1}{m} = \frac{1}{m} \quad \text{ff} (c < cy, -ck^{-1}, -no \text{ cumple}) = -rok^{+} \\ \cdot \text{Adverts} versificanus que el camerels terge un comportanismo cisistica: feltratic = 0.70 \cdot f = 147 \qquad \frac{Mg}{cn^{-2}} \qquad \text{Listerze limite de comportuniento cisistica} \\ f = C + \frac{cy}{(d - c)} = 0.00134 \qquad \text{ff} (c < ceu, -rok^{+}, -No \text{ cumple}) = -rok^{+} \\ f = E - c \cdot c = 291 \cdot 812 \qquad \frac{Mg}{cn^{-2}} \qquad \text{If} (f c < f climite, -rok^{+}, -No \text{ cumple}) = -rok^{-} \\ f = E - \frac{c \cdot c - 291 \cdot 812}{cn^{-2}} \qquad \text{ff} (c < ceu, -rok^{+}, -No \text{ cumple}) = -rok^{-} \\ f = E - c \cdot c = 291 \cdot 812 \qquad \frac{Mg}{cn^{-2}} \qquad \text{if} (f c < f climite, -rok^{+}, -f + no \text{ cumple}) = -rok^{-} \\ f = \frac{1}{c + q} - \frac{1}{q} = \frac{1}{q} =$$

$\varepsilon' \cdot \cdot \cdot \cdot \varepsilon \cdot \cdot$	-0.00104 $f'_{0} = 2$	$r_{e} = E_{e} - 2021 222$	kgf	if (5' 2 - 50)	"ok" "No gur	nnle") – "~	k"
$es:=\frac{d-c}{d-c}$	0.00104 $\int S = E$	<i>S•ES</i> = 2081.223		$\Pi(\varepsilon s < \varepsilon y),$	ok , no cui	(pre) = 0	ĸ
Luczo, so dofino la r	acultanta da tragaión y agmi	ración					
- Luego, se define la fo $Cal := 0.85 \cdot f'a \cdot (a)$	$(m) \cdot h = 40.178$ toppof	$C_{a2} = 0.85 \cdot f$	m_{h-2}	2 282 tompof	$C_{e,-} \Lambda'_{e,+} f'$	a - 12.358	tonnat
$CC1 = 0.85 \cdot j c \cdot (c - 1)$	$(m_{j}) \cdot 0 = 40.118$ tonnej	$CC2 := 0.85 \cdot j$	2 2	2.282 tonne j	$Cs = As \cdot f$	s = 12.336	connej
					$T := As \cdot fy$	= 74.819 to	onnef
- Por último se obtiene εu	la curvatura cedente y el m 1	omento cedente:					
$\phi y \coloneqq \frac{d}{(d-c)} = 0$.0096 —						
	(c-m) ($2 \cdot m$					
$My \coloneqq Cc1 \cdot d - d$	$\frac{(c-m)}{2} + Cc2 \cdot \left[d-c+ - \frac{c}{2}\right]$	$\frac{2}{3}$ + Cs · $(d - d)$	d') = 23769.0	044 kgf ∙ m			
	2) (• /					
5. DIAGRAMA MOMEN	TO - ROTACIÓN (Usando)	las tablas ASCE 41- f'_{c}	$(13)_{fb}$		As	A's	
- Primera columna:	$fb \coloneqq 6000 \frac{ngf}{m^2} \rho b$	$= 0.85 \cdot \frac{fc}{f_{24}} \cdot \beta 1 \cdot \left[$	$\left \frac{f_0}{f_0+f_{21}}\right = 0$	$\rho := -\rho$	$\frac{110}{110} = 0.016$	$\rho' \coloneqq \frac{\pi \sigma}{h \cdot c}$	= 0.00
	СП	JŸ	_J0+J9/	· · · · ·)•u	0.0	L
$xcal := \frac{\rho - \rho}{rb} = 0$.495			E	ntrar en la pri	imera colun	nna
ρο		0					
Se usó estribos de	3/8" en dos ramas: $dbe := -$	$\frac{3}{2}$ <i>in</i> = 0.953 <i>cm</i>	$Ae = \frac{\pi}{2}$	$\frac{\cdot abe}{1} = 0.713$	cm^2 $Av =$	$= 2 \cdot Ae = 1.$	425 сп
Separación entre e	stribos: $sep \coloneqq 10 \ cm$	8		4			
$Vs \coloneqq \frac{Av \cdot fy \cdot d}{d}$	=22547.311 kgf	$Vactuante := \frac{2 \cdot 1}{2 \cdot 1}$	$\frac{My}{M} = 11.767$	7 tonnef			
sep			iga				
- Segunda columna:	$if(sep < \frac{d}{d}, "Confor."."$	"No confor." $=$ "(Confor."				
	$-\left(\begin{array}{c} \cdot \cdot r \\ 3 \end{array}\right)$)					
if	$V_{s} > \frac{3}{V_{actuante}} $ "Co	nfor.". "No confo	\mathbf{r} .") = "Conf	or." F	ntrar en la sec	unda colun	nna
	4)		intrar en la seg	unuu corun	mu
Tercera columna: 44	Vactuante	11.767	.1 1026	3-971 F	ntror on lo tor	eoro colum	n o
- Tercera corumna. y	$\frac{1}{b \cdot d \cdot \sqrt{f'c}}$ 0.2	$30 \cdot 0.3767 \cdot \sqrt{210}$	• 10) – 2.71 E		cera colum	114
	υ ω γ μου οι ο	, , , , , , , , , , , , , , , , , , ,	L	_			
0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	
e0.5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	
<i>m</i> 10	max = 0.405	a1 = 0.005	L1.	0.05	10.2		
$x_1 = 0$	<i>ucui</i> — 0.490	$u_1 := 0.025$	01:=	0.00 C	1 = 0.2		
$x_2 \coloneqq 0.5$		$a_2 := 0.02$	<i>b</i> 2:=	0.03 C	2:=0.2		
	xcal-x1)	•. /-	(xc)	(al-x1) .	0.00		
$at := (a2 - a1) \cdot -$	$\frac{1}{(x2-x1)} + a1 = 0.02$	bt := (b	$(2-b1) \cdot \frac{(x-b1)}{(x-b1)}$	$\frac{1}{(2-x1)} + b1 =$	= 0.03		
(xcal - x1		(,			
$ct \coloneqq (c2 - c1) \cdot \frac{c}{c}$	$\frac{1}{(x^2 - x^1)} + c^1 = 0.2$						
	(~~ ~··) h.h ³		Luige M	5 41			
*Rotación de cedencia	$IC := \frac{0 \cdot n}{12} = 0$	$0.002 \ m^4 \qquad \theta y$	$= \frac{D v y u \cdot M}{6 \cdot F_{0} \cdot L}$	$\frac{g}{r} = 0.003 \ rad$			
	12		0.76.10		(A_{α}, A_{α})		
*Rotación y momento	último: $\theta u \coloneqq \theta y + at \equiv$	= 0.023 rad Mu	$u = My + \frac{0.0}{2}$	JJ•EC•IC•U.3	$\frac{(\sigma u - \sigma y)}{(\sigma u - \sigma y)} =$	25258.7 kg	f∙m
				m			
*Rotación y momento	residual: $\theta r := \theta y + bt =$	= 0.033 rad Mr	$r := My \cdot ct =$	4753.809 kgf	• m		
*Criterios de aceptacio	ón:						
					IO	LS	CP
					a	b	c
	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.0
0.0 C		0.02	0.03	0.2	0.005	0.02	0.0
0.0 C :0.5 C	≤3 (0.25)	0.02			1 0.05		
0.0 C 0.5 C x1 := 0	≤3 (0.25)	a1 := 0.010	b1 :=	0.025	C1 = 0.05		
$\begin{array}{ccc} 0.0 & C \\ 0.5 & C \\ x1 := 0 \\ x2 := 0 5 \end{array}$	$\leq 3 (0.25)$	$a1 \coloneqq 0.010$ $a2 \coloneqq 0.005$	b1 :=	0.025	c1 = 0.05 c2 = 0.03		
$\begin{array}{ccc} 0.0 & C \\ 0.5 & C \\ x1 := 0 \\ x2 := 0.5 \\ \end{array}$	$\leq 3 (0.25)$ $xcal = 0.495$	a1 := 0.010 a2 := 0.005	b1 := b2 :=	0.025	c1 = 0.05 c2 = 0.03		
$\begin{array}{ccc} 0.0 & C \\ 0.5 & C \\ x1 := 0 \\ x2 := 0.5 \\ IO := (x^2 - 1) \\ \end{array}$	$\leq 3 (0.25)$ $xcal = 0.495$ $(xcal - x1)$	a1 := 0.010 a2 := 0.005	$b1 \coloneqq b2 \coloneqq b2 \coloneqq b2 \mapsto b2 \mapsto b2 \mapsto b2 \mapsto b1 = b1$	(0.025) (0.02) (cal - x1)	c1 = 0.05 c2 = 0.03		
$ \begin{array}{c} 0.0 & C \\ 0.5 & C \\ x1 := 0 \\ x2 := 0.5 \\ IO := (a2 - a1) \cdot - \end{array} $	$\leq 3 (0.25)$ $xcal = 0.495$ $\frac{(xcal - x1)}{(x2 - x1)} + a1 = 0.005$	a1 := 0.010 a2 := 0.005 LS := ($b1 := b2 := b2 := b2 \cdot \frac{(x_0)}{(x_0)}$	$\frac{0.025}{0.02}$ $\frac{cal - x1)}{x2 - x1)} + b1$	c1 = 0.05 c2 = 0.03 = 0.02		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\leq 3 (0.25)$ $xcal = 0.495$ $(xcal - x1)$ $(xcal - x1)$ $(xcal - x1)$	a1 := 0.010 a2 := 0.005 LS := ($b1 := b2 := b2 = b2 \cdot \frac{(x)}{(x)}$	0.025 0.02 $\frac{cal - x1)}{x2 - x1)} + b1$	c1 = 0.05 c2 = 0.03 = 0.02		

$$\begin{array}{c} A = \frac{E \cdot e_Y \cdot b}{2} = 0.94, 718 \frac{b \operatorname{cmref}}{m} \qquad B = fy \cdot (A + A \cdot b) = 13.018 t \operatorname{comref} \\ D = -(fy \cdot (A \cdot d + A \cdot d)) = -37.038 t \operatorname{comref} \cdot m \qquad e^{-\frac{D}{2} + \sqrt{p^2 + 4 \cdot A \cdot D}} = 15.833 \operatorname{cm} \quad \operatorname{primulatian} \det e^{-\frac{D}{2}} \\ \operatorname{eventro} \\ - A \ between t a portundated del gie neutro, se verifica que et acces supeior a comparation to ha celde: \\ E \neq = \frac{G \cdot f(-A)}{d - c} = 0.0002 \qquad f^{3} = E \cdot e^{-\frac{D}{2}} + E \cdot e^{-\frac{D}{2}} + \frac{10}{2} \frac{M^{2}}{m^{2}} \qquad \text{If } (E < e_{X} \cdot y \cdot e^{-\frac{D}{2}}, \text{ to cumple}^{2}) = + e^{-\frac{D}{2}} \cdot e^{-\frac{D}{2}} \\ - e^{-\frac{D}{2}} = 0.0007 \qquad \text{If } (E < e^{-\frac{D}{2}} + \frac{10}{m^{2}} + \frac{M^{2}}{m^{2}} \qquad \text{If } (E < e^{-\frac{D}{2}} + \frac{10}{m^{2}} + \frac{1$$

$c \ s := \frac{d}{d}$ - Luego, se defir Cc1 := 0.85 - Por último se o $\phi y := \frac{\varepsilon y}{(d-c)}$	$c = \frac{1}{c} = 0.00051$ e la resultante de tra $bf'c \cdot (c-m) \cdot b = 0$	acción y comp	presión:	cm^2	n (c s		o cumple) – C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
- Luego, se defir $Cc1 \coloneqq 0.85$ - Por último se o $\phi y \coloneqq \frac{\varepsilon y}{(d-c)}$	e la resultante de tra $\cdot f'c \cdot (c-m) \cdot b = 0$	acción y comp	presión:					
$Cc1 \coloneqq 0.85$ - Por último se o $\phi y \coloneqq \frac{\varepsilon y}{(d-c)}$	$\cdot f'c \cdot (c-m) \cdot b = 0$		Siebion.					
- Por último se o $\phi y \coloneqq \frac{\varepsilon y}{(d-c)}$		THE PROPERTY OF T	$Cc2 = 0.85 \cdot f'$	$m \cdot h - 4$	12 265 tonn	ef Cs - A	$f'_{8}, f'_{8} = 17.764$	tonnef
- Por último se o $\phi y \coloneqq \frac{\varepsilon y}{(d-c)}$		o connej	0.00 • j	2	2.200 001010	T = A c	$f_{3} = 57.105$	masf
- Por ultimo se c $\phi y \coloneqq \frac{\varepsilon y}{(d-c)}$		1 . 1				$I \coloneqq AS$	y = 57.195 <i>u</i>	mnej
$\phi y \coloneqq \frac{1}{(d-c)}$	bliene la curvatura 1	sedente y el m	iomento cedente:					
	= 0.0047 - m							
	$\left(\left(c-m\right) \right)$	($2 \cdot m$					
$My \coloneqq Cc1 \cdot$	$\left d-\frac{(c-m)}{2}\right +C$	$c_2 \cdot d - c +$	$\frac{-1}{3}$ + Cs · (a)	d-d')=329	05.146 kgf	• <i>m</i>		
	(2)	(5 /					
5. DIAGRAMA	MOMENTO - ROT	ACIÓN (Usa	ndo las tablas AS	SCE 41-13)		10	A's	
- Primera colum	$ha: fb \coloneqq 6000 - 6000$	$\frac{\kappa g j}{2} \rho b$	$= 0.85 \cdot \frac{fc}{f_{out}} \cdot \beta$	$1 \cdot \left(\frac{f_0}{f_0 + f_0} \right)$	= 0.021	$\rho \coloneqq \frac{As}{b} = 0.0$	$\rho' \coloneqq \frac{As}{b}$	-=0.01
,	(em⁻	JŸ	(J0+Jy)	/	0•4	0.0	L
$\frac{\rho - \rho'}{\rho} = -0$.097					Entrar en la p	rimera columna	
ho b								
Se usó estrib	os de 3/8" en dos ra	mas: <i>dbe</i> ≔	$\frac{3}{-}$ in = 0.953 c	m Ae∷	$=\frac{\boldsymbol{\pi} \cdot dbe^2}{2}$	$0.713 \ cm^2$	$Av \coloneqq 2 \cdot Ae = 1.$.425 cm
Separación e	ntre estribos: sen:	- 10 cm	8		4			
$V_{av} = Av \cdot f$	$y \cdot d = 25012.802$	hof Vo	2 · A	My = 28.86	1 topmof			
vs :=		⊼yj vu	Lvi	$ga = 20.00^{2}$	± connej			
G 1 1	d	"(C) (C)"		"C C "				
- Segunda colum	na: If $sep \leq \frac{-}{3}$,	"Confor.",	"No confor." $=$	= "Confor."				
	. (3		,					
	$if Vs > \frac{1}{4} \cdot Vac$	etuante , "Co	onfor." , "No co	n for." = "C	Confor."	Entrar en la se	egunda columna	
	Vactuante		28 864	/				
- Tercera columr	a:	xcal :=		• 1.192	26 = 4.173	Entrar en la te	ercera	
	$b \cdot d \cdot \sqrt{f'c}$	0.3	$30 \cdot 0.60 \cdot \sqrt{210}$	• 10		columna		
			a	b	c			0.05
.0 C	≤3 (0).25)	0.025	0.05	0.2	0.010	0.025	0.05
.0 C	≥6 (0).5)	0.02	0.04	0.2	0.005	0.02	0.04
x1 := 3			a1 = 0.025	b	01 := 0.05	c1 := 0.2		
$x_2 := 6$	x cal = 4.173	3	$a_2 := 0.02$	h	2 := 0.04	$c_{2} := 0.2$		
w2 != 0			u2 := 0.02	Ū	2 - 0.01	01 - 012		
at - (a)	(xcal-x1)	a1 = 0.022		ht(ha h	(xcal -	x_{1} + b_{1} - 0.04	c	
ui = (u2 - u)	$(x_2 - x_1)^+$	$u_1 = 0.023$		01 = (02 - 0)	$(x_2 - x_1) \cdot (x_2 - x_2)$		0	
1	(xcal - x1)				,	-		
$ct \coloneqq (c2 - c$	1) $\cdot \frac{1}{(x^2 - x^1)} + \frac{1}{(x^2 - x^1)}$	c1 = 0.2						
	(=)	$h_{*}h^{3}$		Luigo	. Mai			
*Rotación de ceo	lencia: I	$c \coloneqq \frac{0 \cdot n}{12} \equiv$	$0.007 \ m^4$	$\theta y \coloneqq \frac{L v t y u}{c - E}$	$\frac{1}{1} = 0.00$)1 rad		
		12		0.170				
*Rotación y mor	nento último: θ	$u := \theta y + at =$	= 0.024 rad	$Mu \coloneqq My +$	$-\frac{0.05 \cdot Ec \cdot I}{2}$	$c \cdot 0.3 \cdot (\theta u - \theta y)$	$\frac{y}{2} = 38063.875$	$kgf \cdot m$
						m		
*Rotación y mor	nento residual: θ	$\theta r \coloneqq \theta y + bt =$	=0.047 rad	$Mr := My \cdot d$	ct = 6581.02	9 kaf • m		
*Criterios de ace	ptación:	v		U				
	1					10	LS	C
						10	b ES	0
.0 C	≤3	(0.25)	0.025	0.05	0.	.2 0.010	0 0.025	ί
.0 C	≥6	(0.5)	0.02	0.04	0.	2 0.005	5 0.02	0
$x1 \coloneqq 3$			a1 = 0.010		1 := 0.025	c1 := 0.05		
x2 := 6	xcal = 4.173	3	a2 = 0.005		2 = 0.02	c2 = 0.04		
	$(mac_{l}, m1)$				(mag1	<i>m</i> 1)		
10 (0	$(xcai - x1) \cdot \frac{(xcai - x1)}{(xcai - x1)}$	+a1 = 0.008		$LS \coloneqq (b2 - b)$	$b1) \cdot \frac{(xcal - b)}{(cal - b)}$	$\frac{-x_{1}}{x_{1}} + b_{1} = 0.02$	23	
$IO \coloneqq (a2 - b)$	$(x^2 - x^1)$				(x2 -	<i>x</i> 1)		
$IO \coloneqq (a2 -$								

$$A = \frac{Fc - cy - b}{2} = 684.718 \frac{tornef}{m} \qquad B = fy \cdot (As + A^{2}) = 130.018 \ tornef = 18.255 \ cm Primidial del cyce and the end of the e$$

- Luego, se define la $Cc1 \coloneqq 0.85 \cdot f'c$ - Por último se obtie $\phi y \coloneqq \frac{\varepsilon y}{(d-c)} \equiv$	a resultante de tracción y cor $c \cdot (c-m) \cdot b = 12.132$ ton	npresión: $cnef Cc2 \coloneqq 0.85 \cdot f'c$	cm				
- Luego, se define la $Cc1 \coloneqq 0.85 \cdot f'c$ - Por último se obtie $\phi y \coloneqq \frac{\varepsilon y}{(d-c)} \equiv$	a resultante de tracción y cor $c \cdot (c-m) \cdot b = 12.132$ ton	npresión: $cnef Cc2 \coloneqq 0.85 \cdot f'c$					
$Cc1 \coloneqq 0.85 \cdot f'c$ - Por último se obtie $\phi y \coloneqq \frac{\varepsilon y}{(d-c)} \equiv$	$c \cdot (c-m) \cdot b = 12.132$ ton	nef $Cc2 \coloneqq 0.85 \cdot f'c$	111				
- Por último se obtie $\phi y \coloneqq \frac{\varepsilon y}{(d-c)} =$			$c \cdot \frac{m}{2} \cdot b = 42.0$	644 tonne	$f Cs \coloneqq A's \cdot f's \\ T \coloneqq As \cdot fy =$	=18.048 tor 72.823 tonr	ınef ıef
$\phi y \coloneqq \frac{\varepsilon y}{(d-c)} =$	ene la curvatura cedente y el	momento cedente:					
($= 0.005 \frac{1}{m}$						
$My \coloneqq Cc1 \cdot \left(d \cdot d\right)$	$-rac{(c-m)}{2} ight)+Cc2ullet\left(d-cullet$	$+\frac{2\cdot m}{3}+Cs\cdot (d-d)$	l') = 39424.17	6 kgf • m			
5. DIAGRAMA MOME	ENTO - ROTACIÓN (Usand	o las tablas ASCE 41-1	3)				
- Primera columna:	$fb \coloneqq 6000 \frac{kgf}{cm^2} \qquad \rho$	$b \coloneqq 0.85 \cdot \frac{f'c}{fy} \cdot \beta 1 \cdot \left(-\frac{f'c}{fy} \cdot \beta 1 \cdot \left(-\frac{f'c}{fy$	$\frac{fb}{fb+fy} = 0.0$	$\rho :=$	$=\frac{As}{b \cdot d}=0.01$	$\rho' \coloneqq \frac{A's}{b \cdot d} \equiv$	0.008
$xcal := \frac{\rho - \rho'}{r} =$	= 0.097				Entrar en la prin	nera columna	
ho b							
Se usó estribos o Separación entre	de 3/8" en dos ramas: <i>dbe</i> :	$=\frac{3}{8}$ in = 0.953 cm	$Ae \coloneqq \frac{\boldsymbol{\pi} \cdot d}{4}$	$\frac{be^2}{1} = 0.71$	$3 \ cm^2 \qquad Av \coloneqq$	$2 \cdot Ae = 1.42$	5 cm ²
$Vs \coloneqq \frac{Av \cdot fy \cdot c}{Vs}$	$d = 35912.893 \ kgf$ V	$Vactuante \coloneqq \frac{2 \cdot My}{2 \cdot My}$	=34.583 tonr	ref			
sep		Lviga					
- Segunda columna:	$ \operatorname{if}\left(sep \leq \frac{d}{3}, \text{``Confor.''}\right)$	(, "No confor.") = "C	onfor."				
i	$\mathbf{if}\left(Vs > \frac{3}{4} \cdot Vactuante, "C$	Confor.", "No confor	() = "Confor	. "	Entrar en la segu	ında columna	
Tanaana aalumuna.	Vactuante	34.583	1 1096	_ F	Entrop on lo tore		
- Tercera columna.	$y \coloneqq \frac{1}{b \cdot d \cdot \sqrt{f'c}}$	$0.30 \cdot 0.60 \cdot \sqrt{210}$	•10 •10	= 0	Entrar en la terc	era columna	
≤0.0 C	≥6 (0.5)	a 0.02	b 0.04	c 0.2	0.005	0.02	0
≥0.5 C	≥6 (0.5)	0.015	0.02	0.2	0.005	0.015	0
$x_1 \coloneqq 0$		a1 := 0.02	b1 := 0.	.04	c1 := 0.2		
$x2 \coloneqq 0.5$	xcal = 0.097	a2 = 0.015	$b2 \coloneqq 0.$.02	$c2 \coloneqq 0.2$		
$at \coloneqq (a2 - a1)$	$\cdot \frac{(xcal - x1)}{(x2 - x1)} + a1 = 0.019$) bt:=	$(b2-b1)\cdot\frac{(a)}{(b2-b1)}$	$\frac{xcal - x1)}{x2 - x1)}$	+b1 = 0.036		
ct := (c2 - c1).	$\frac{(xcal-x1)}{(x2-x1)} + c1 = 0.2$						
*Rotación de cedeno	cia: $Ic := \frac{b \cdot h^3}{12}$	$= 0.007 \ m^4 \qquad \theta y :=$	$=\frac{Lviga \cdot My}{6 \cdot Ec \cdot Ic}$	=0.001 ra	d		
*Rotación v momen	to último: $\theta u := \theta u + a$	t = 0.02 rad Mu	$= Mu + \frac{0.05}{0.05}$	$\bullet Ec \bullet Ic \bullet 0.$	$3 \cdot (\theta u - \theta y) = 4$	3683 553 ka	f • m
ite action y memory			1129	m			,
*Rotación y momen *Criterios de acenta	to residual: $\theta r := \theta y + b t$	$t = 0.037 \ rad$ Mr	$= My \cdot ct = 78$	384.835 kg	f·m		
eriterios de acepta					ΙΟ	LS	CF
					a	b	c
≤0.0 C	≥6 (0.5)	0.02	0.04	0.2	0.005	0.02	0
∠0.5 C	≥o (0.5)	0.015	0.02	0.2	0.005	0.015	0
	x cal = 0.097	a1 := 0.005	$b1 \coloneqq 0.$.02	c1 := 0.04		
$x_2 := 0.5$		a2 := 0.005	$b2 \coloneqq 0.$.015	c2 := 0.02		
$IO \coloneqq (a2 - a1)$	$\cdot \frac{(xcal - x1)}{(x2 - x1)} + a1 = 0.00$	5 LS :	$=(b2-b1)\cdot$	$\frac{xcal - x1}{(x2 - x1)}$	+b1 = 0.019		
	(xcal - r1)			(

- Determinando el eje neutro de la sección: $c^{2} \left(\frac{Ec \cdot \varepsilon y \cdot b}{2} \right) + c \cdot (fy \cdot (As + A's)) - fy \cdot (A's \cdot d' + As \cdot d) = 0$

 $A \cdot c^2 + B \cdot c + D = 0$

A	$= \frac{Ec \cdot \varepsilon y \cdot b}{1}$	$\frac{5}{-=684.71}$	8 tonnef	В	$B \coloneqq f u \cdot (As + A's)$) = 105.078	8 tonnef		
	2		m		J J (·)	_		
D	$:= -(fy \cdot (A))$	$s \cdot d' + As$	$\cdot d)) = -22$.994 tonnef ∙ m	$c := \frac{-B + \sqrt{B}}{2}$	$\frac{A^2 - 4 \cdot A \cdot I}{\cdot A}$	$D = 12.194 \ cm$	Profundidae	d del eje
	1		1.	· c 1		., 1	1.1		
- Al of $\varepsilon' \varepsilon$	$s := \frac{\varepsilon y \cdot (c - \varepsilon y)}{\varepsilon y \cdot (c - \varepsilon y)}$	$\frac{d'}{d'} = 0.00$	0032	se verifica que el acer $f's := Es \cdot \varepsilon's = 632.0$	$016 - \frac{kgf}{2}$	$\mathbf{if}(\varepsilon's < \mathbf{if})$	a cedido: < <i>ɛy</i> , "ok" , "no c	umple") = "o	ok"
	d-c				cm²				
- Ader	nás verifican	nos que el c	oncreto teng	ga un comportamiento	elástico:				
fc	$límite \coloneqq 0.'$	$70 \cdot f'c = 1$	$47 \frac{kgf}{cm^2}$	Esfuerzo límite d concreto	e comportamiento	elástico de	1		
εc	$:= \frac{\varepsilon y \cdot c}{(d-c)} =$	=0.00054		$\mathbf{if}(arepsilon c < arepsilon c u, "ok$	x", "No cumple'	?)="ok"			
fc	$= Ec \cdot \varepsilon c =$	- 116.434	kgf cm ²	$\mathbf{if}(fc < fclimite$	e, "ok", "no cum	nple")="ol	k"		
G 1	c 1 1	1 .	.,	.,					
- Se do	$fc \cdot c \cdot b$	ante de tra	ccion y com	presion:	055 4 6	<i>a a</i>	1 10 050		
	2	-=21.297	tonnef	$T \coloneqq As \cdot fy = 32$.255 tonnef	$Cs \coloneqq A$	$fs \cdot fs = 10.958 t$	onnef	
- Por ú	último obtene	emos la cur	vatura ceder	nte y el momento ceder	nte:				
ϕ_l	$y \coloneqq \frac{\varepsilon y}{\varepsilon y} \equiv$	0.004393	1						
	a-c		m						
M	$y \coloneqq Cc \cdot \frac{2}{3}$	$c + Cs \cdot (c$	$(d') + T \cdot$	(d-c) = 17939.508	kgf∙m				
5. DIAGR	AMA MOM	ENTO - R	DTACIÓN (Usando las tablas ASC	CE 41-13)				
- Prim	era columna	: fb := 6	000 <u>kgf</u>	$\rho b \coloneqq 0.85 \cdot \frac{f'c}{f'}$	$\beta_{1} \cdot \left(\underbrace{fb}{} \right) =$	0.021	$\rho \coloneqq \frac{As}{a} = 0.004$	$4 \rho' \coloneqq \frac{A}{2}$	$\frac{s}{}=0.0$
		<i>J</i>	cm^2	fy	(fb+fy)		$b \cdot d$	' b•	d
<u> </u>	$\frac{-\rho'}{\rho h} = -0.2$	53					Entrar en la prin	nera column:	a
	po			3		dbe^2			
Se	e usó estribos	de 3/8" en	dos ramas:	$dbe \coloneqq \frac{6}{8}$ in = 0.953	$e cm \qquad Ae := -$	$= (\frac{1}{4})^{-1}$	$0.713 \ cm^2 A^2$	$v \coloneqq 2 \cdot Ae = 1$	1.425 ст
Se	eparación ent	re estribos:	$sep \coloneqq 10$	cm o	Mar	-1			
V	$s := \frac{Av \cdot fy}{sep}$	= 35912	2.893 kgf	$Vactuante \coloneqq \frac{2}{L}$	$\frac{\cdot My}{viga} = 4.66$ ton	nef			
- Segu	ında columna	\mathfrak{i} : $\mathbf{if}\left(sep ight)$	$0 \le \frac{d}{3}$, "Con	nfor.", "No confor."	= "Confor."				
		$\mathbf{if}\left(Vs > \frac{3}{4}\right)$	-•Vactuan	te , "Confor." , "No c	$\operatorname{confor."} = \operatorname{"Con}$	nfor."	Entrar en la segu	ında column:	a
т		Vactuan	te	4.66	1 1000	0.674	E.A.		
- Terce	era columna:	$b d \sqrt{f}$	- xc	al :=	• 1.1926 : 10 • 10	=0.674	Entrar en la terc	era columna	na
		στατγj	C	0.50 • 0.00 • 7 2					
≤0.0	С		≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
at	= 0.025	bt	= 0.05	$ct \coloneqq 0.2$					
*Rota	ción de cede	ncia:	$Ic := \frac{b}{b}$	$\frac{h^3}{12} = 0.007 \ m^4$	$\theta y \coloneqq \frac{Lviga \cdot l}{6 \cdot Fc}$	$\frac{My}{L_{c}} = 0.002$	2 rad		
				12	0.756.0	$05 \cdot E_0 \cdot L$	(A_{1}, A_{2}, A_{3})		
*Rota	ción y m <mark>o</mark> me	ento último:	$\theta u \coloneqq \theta$	$\partial y + at = 0.027 \ rad$	$Mu \coloneqq My + -$.05•20•10	$\frac{m}{m}$	= 23535.953	3 kgf ∙ m
*Rota	ción y mome	ento residua	1: $\theta r \coloneqq \theta$	$y + bt = 0.052 \ rad$	$Mr := My \cdot ct$	= 3587.902	$kgf \cdot m$		
*Crite	rios de acent	ación:							
	nes de despr						10	LS	CP
≤0.0	С		≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
					10.0	010	IS. 0.025	CD	
					$IO \coloneqq 0$.010	L3 := 0.025	CP	·= 0.05

- Determinando el eje neutro de la sección: $c^{2} \left(\frac{Ec \cdot \varepsilon y \cdot b}{2} \right) + c \cdot (fy \cdot (As + A's)) - fy \cdot (A's \cdot d' + As \cdot d) = 0 \qquad A \cdot c^{2} + B \cdot c + D = 0$

$$A = \frac{Ec \cdot g \cdot b}{2} = 0.84.718$$

$$B = f_{1} \cdot (As + A^{*}) = 105.078 \text{ formal} f$$

$$D = -(fy \cdot (A \cdot d^{*} + A \cdot d)) = -45.307 \text{ formal} f \cdot m$$

$$c = \frac{-B + \sqrt{B^{2} - 4 \cdot A \cdot D}}{2 \cdot A} = 10.17 \text{ cm}$$

$$Profindidad del eigenetities is the second second$$

$\varepsilon's \coloneqq \frac{-s}{d}$	$\frac{a}{2} = 0.00073$	$f's \coloneqq \varepsilon's \cdot Es = 14$	$469.183 - \frac{109}{2}$	$\mathbf{if}(\varepsilon's)$	< arepsilon y, "ok", "No	cumple") = "o	k"
			cm				
- Luego, se define	la resultante de tracció	n y compresión:		m			
$Cc1 \coloneqq 0.85 \cdot $	$f'c \cdot (c-m) \cdot b = 19.9'$	79 tonnef Co	$c2 \coloneqq 0.85 \cdot f'c \cdot \cdot$	$\frac{1}{2} \cdot b = 41.562$	2 tonnef Cs≔	$=A's \cdot f's = 11.2$	83 ton
					$T \coloneqq$	$As \cdot fy = 72.823$	3 tonne
- Por último se ob εy	tiene la curvatura ceden	te y el momento ce	dente:				
$\phi y \coloneqq \frac{1}{(d-c)}$	=0.0052 - m						
Marine Call	(c-m)	$\left(\begin{array}{c} 2 \cdot m \right)$	$T_{2}\left(d - d'\right) = 2$	056 104 b of			
$My = Cc1 \cdot ($	$\left(\frac{1}{2}\right)^{+CC2}$	$\begin{pmatrix} u-c+$	$2s \cdot (a - a) = s$	9050.104 kgj	• m		
	ΓΕΝΤΟ - ΡΟΤΑΟΙΟΝ	Usando las tablas A	SCF 41-13)				
- Primera columna	$fb := 6000 \frac{kgf}{kgf}$	$ab := 0.85 \cdot \frac{f}{2}$	$c \cdot \beta_1 \cdot (\frac{fb}{fb})$	-) = 0.021	$a = \frac{As}{a} = 0.0^{\circ}$	1 $\rho' \coloneqq \frac{A's}{a}$	-=0.00
Triniera cortainin	<i>cm</i> ²	f	$y \int fb + fg$	y) ^{=0.021}	$b \cdot d$	$b \cdot d$	l _ 0.00
$xcal \coloneqq \frac{\rho - \rho'}{1 + \rho'}$	= 0.253				Entrar en la pr	imera columna	
ρ <mark>b</mark>							
Se usó estribo	s de 3/8" en dos ramas:	$dbe \coloneqq \frac{3}{n} = 0.9$	953 cm Ae	$= \frac{\boldsymbol{\pi} \cdot dbe^2}{2} =$	$0.713 \ cm^2$	$Av \coloneqq 2 \cdot Ae = 1.$	425 сп
Separación en	tre estribos: $sep \coloneqq 10$	cm 8		4			
$Vs := \frac{Av \cdot fy}{Vs}$	• <i>d</i> = 35912.893 <i>kgf</i>	Vactuan	$te \coloneqq \frac{2 \cdot My}{1 = 1} = 1$	0.144 tonnej			
sep			Lviga				
- Segunda column	a: $\mathbf{if}\left(sep \leq \frac{d}{2}, \text{``Co}\right)$	nfor." , "No confo	[r."] = "Confor."	"			
)				
	if $Vs > \frac{3}{4} \cdot Vactuar$	ite, "Confor.", "N	No confor." $=$ '	Confor."	Entrar en la seg	gunda columna	
	Vaatuanta	10.1)				
- Tercera columna	$y \coloneqq \frac{vactuante}{\sqrt{1-vactuante}}$		$\frac{14}{\sqrt{1}} \cdot 1.19$	926 = 1.467	Entrar en la tei	rcera columna	
	$b \cdot d \cdot \sqrt{f'c}$	$0.30 \cdot 0.60 \cdot 1$	$\sqrt{210 \cdot 10}$				
0.0 C	<3 (0.25)		b 0.05		2 0.010	0.025	
0.5 C	<3 (0.25)	0.0	2 0.03	0.2	0.005	0.02	(
$x_1 \coloneqq 0$	xcal = 0.253		0.025	b1 := 0.05	c1 = 0.2		
$x2 \coloneqq 0.5$		a2:=0	0.02	b2 = 0.03	c2 := 0.2		
-4 (-2 -1	(xcal-x1)	0.022	14 (19	(xcal - xcal -	x1) 1 0.04		
$a\iota \coloneqq (a_2 - a_1)$	$(x_2 - x_1) + a_1 =$	0.022	$bl \coloneqq (b2 -$	$(x_2 - x_1) \cdot \frac{1}{(x_2 - x_1)}$	$\frac{1}{1} + b1 = 0.04$		
$at = \begin{pmatrix} a^2 & a^1 \end{pmatrix}$	(xcal-x1)	0.9					
ci = (c2 - c1)	$(x_2 - x_1)^{+c_1}$	0.2					
*Rotación de cede	ncia: Ic :	$b \cdot h^3 = 0.007 m^4$	Au:- Lvig	$a \cdot My = 0.00$	3 rad		
redución de cede	nona. 10.–	12	6.1	$Ec \cdot Ic$			
*Rotación y mom	ento último: $\theta u := 0$	$\partial y + at = 0.026$ ra	d Mu := My	$+\frac{0.05 \cdot Ec \cdot I}{2}$	$c \cdot 0.3 \cdot (\theta u - \theta y)$	$) = 44087.25 \ k$	af∙m
,, j		· · · · · · · · · · · ·			m		35
*Rotación y mom	ento residual: $\theta r \coloneqq \theta$	$\partial y + bt = 0.043 \ ra$	$d Mr \coloneqq My$	$\cdot ct = 7811.22$	1 kgf ∙ m		
*Criterios de acep	tación:						
					IO	LS	CP
					a	b	c
0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
).5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
x1 := 0	xcal = 0.253	a1:=0	0.010	$b1 \coloneqq 0.025$	c1 := 0.0)5	
x2 := 0.5		a2:=0	0.005	b2 := 0.02	c2 := 0.0)3	
	(real - r1)		(mag	$(l-r^1)$			
$IO \coloneqq (a2 - a)$	$1) \cdot \frac{(x(u-x1))}{(x^2-x^1)} + a1$	= 0.007 $LS :=$	$(b2-b1) \cdot \frac{(xc)}{(x)}$	$\frac{a-x_1}{(-x_1)} + b1 =$	= 0.022		
	$(max^2 m^1)$		(22	· ···)			

4 A .	-= 084.718) = 66.505 tonne	f	
2	<u>m</u>	<i>D</i> :-	J9 (210 213)			
$D := -(f_{21}, (A))$	$(s \cdot d' + As \cdot d)) = -1^{\prime}$	3 301 tonnef.m	$C := \frac{-B+1}{2}$	$\sqrt{B^2 - 4 \cdot A \cdot D}$	= 9.903 cm	
$D = -(J g \cdot (A))$	$s \cdot u + As \cdot u = -1$	5.501 conneg · m		$2 \cdot A$	- 3.303 Cm	
Al obtener la proj	fundidad del eie neutra	sa varifica qua al acaro	superior a comp	resión no ha cedid	0.	
- Al obtener la plo	(d)	for Ea de Eacelo	kgf		(" - 1-"
$\varepsilon s \coloneqq \frac{d}{d-c}$	= 0.00029	$J s \coloneqq Es \cdot \varepsilon s \equiv 580.73$	$\frac{58}{cm^2}$	$\mathbf{H}(\varepsilon s < \varepsilon y, \operatorname{ok})$, "no cumple") =	= "OK"
- Además verificar	nos que el concreto ten kaf	iga un comportamiento el	lástico:			
fclimite := 0.7	$70 \cdot f'c = 147 \frac{cc}{cm^2}$	Esfuerzo límite de com	nportamiento elás	stico del		
Ey·c						
$\varepsilon c \coloneqq \frac{c}{(d-c)}$	= 0.00059	if $(\varepsilon c < \varepsilon c u, \text{``ok''}, \text{``f})$	No cumple") =	"ok"		
	kaf			<u>`</u>		
$fc \coloneqq Ec \cdot \varepsilon c =$	$128.801 \frac{109}{2}$	$\mathbf{if}(fc < fclimite, "ok$	«", "no cumple"	")="ok"		
	CIII					
- Se define la resul	tante de tracción y con	npresión:				
$Cc \coloneqq \frac{Jc \cdot c \cdot v}{2}$	-=19.133 tonnef	$T \coloneqq As \cdot fy = f$	24.94 tonnef	$Cs := \Delta$	$4's \cdot f's = 5.807 t$	onnef
2						
- Por último obtene	emos la curvatura cede	nte y el momento cedent	.e:			
$\phi y \coloneqq \frac{\varepsilon y}{\varepsilon} =$	0.005983 - 1					
d-c	m					
$My \coloneqq Cc \cdot \frac{2}{2}$	$\cdot c + Cs \cdot (c - d') + T$	$(d-c) = 10300.867 \ k$:gf ∙ m			
3	, , , , , , , , , , , , , , , , , , ,					
5. DIAGRAMA MOM	ENTO - ROTACIÓN	(Usando las tablas ASCE	E 41-13)			
- Primera columna	$: fb := 6000 \frac{kgf}{kgf}$	$b := 0.85 \cdot \frac{f'c}{c} \cdot d$	$\beta_{1} \cdot \left(\frac{fb}{fb} \right) = 0$	$0.021 \rho \coloneqq -\frac{A}{2}$	$\frac{4s}{2} = 0.004$ ($a' := \frac{A's}{a} = 0$
	cm^2	fy	(fb+fy)	b b	$\cdot d$	$b \cdot d$
$\rho - \rho' = -0.1$	38			Entra	r an la nrimara c	olumna
	50			Entra		orumna
G (, 1	1 2/01 1	, 3, 0,059	, π	$\cdot dbe^2$ 0.710	2 4 0	4 1 405
Se uso estribos	de 3/8" en dos ramas:	$abe \coloneqq - n = 0.953$	cm $Ae \coloneqq -$	$\underline{=}=0.713$ d	$m Av \coloneqq 2 \cdot$	Ae = 1.425
Separation ent $Av \cdot fy$	re estribos: $sep \coloneqq 10$	<i>cm</i> 2•1	My			
$Vs \coloneqq \frac{1}{sep}$	—=26934.669 kgf	$Vactuante := \frac{1}{Lv}$	=================================	nef		
	a d a	• • • • • • • • • • • • • • • • • • •				
- Segunda columna	a if sen < "Co	mfor.", "No confor." :				
8	$\prod_{p>0} p \leq \frac{1}{3}, cc$		= "Confor."			
	(3))	= "Confor."			
	$ if \left(Vs > \frac{3}{4} \cdot Vactuar \right) $)nte, "Confor.", "No co	= "Confor." onfor.") = "Con	for." Entra	r en la segunda c	olumna
	$\inf \left(V_s > \frac{3}{4} \cdot Vactuar \right)$) nte, "Confor.", "No cc	= "Confor."	for." Entra	r en la segunda co	olumna
- Tercera columna:	$\frac{Vactuante}{\sqrt{2}}$) nte , "Confor." , "No co cal :=	= "Confor." pnfor.") = "Con 	for." Entra = 1.662 Entra	r en la segunda co r en la tercera co	olumna lumna
- Tercera columna:	$ \frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}} xc $) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$	$= \text{``Confor.''}$ $= \text{``Confor.''} = \text{``Con}$ $= 0 \cdot 10$	for." Entra = 1.662 Entra	r en la segunda c r en la tercera co	olumna lumna
- Tercera columna:	$ \frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}, \text{or} o$) nte, "Confor.", "No contraction of the second	$= \text{``Confor.''} = \text{``Con}$ $= \text{``Con}$ $= 0 \cdot 10$ b	for." Entra = 1.662 Entra c	r en la segunda c r en la tercera co	olumna lumna
- Tercera columna: ≤0.0 C	$ \frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}} x 0 $) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ a 0.025	$= \text{``Confor.''} = \text{``Con}$ $= \text{``Con}$ $= 0 \cdot 10$ b 0.05	for." Entra = 1.662 Entra c 0.2	r en la segunda co r en la tercera co 0.010 0.0	olumna lumna)25 0
- Tercera columna: ≤0.0 C at := 0.025	$if\left(Vs > \frac{3}{4} \cdot Vactuan\right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt := 0.05$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ a 0.025 ct := 0.2	$= \text{``Confor.''} = \text{``Con}$ $\underbrace{=}_{0 \cdot 10} \cdot 1.1926 = \underbrace{b}_{0.05}$	for." Entra = 1.662 Entra 0.2	r en la segunda co r en la tercera co 0.010 0.0	olumna lumna)25 0
- Tercera columna: ≤0.0 C at := 0.025	$if\left(Vs > \frac{3}{4} \cdot Vactuan}{\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}} xc$ $\leq 3 (0.25)$ $bt \coloneqq 0.05$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ a 0.025 ct := 0.2	$= \text{``Confor.''} = \text{``Con}$ $= \text{``Con}$ $= 0 \cdot 10$ b $= 0.05$	for." Entra = 1.662 Entra c 0.2	r en la segunda c r en la tercera co 0.010 0.0	olumna lumna)25 0
- Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede	$if\left(Vs > \frac{3}{4} \cdot Vactuan\right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt \coloneqq 0.05$ ncia: $Ic \coloneqq -1$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ a 0.025 ct := 0.2 $b \cdot h^{3} = 0.003 m^{4}$	$= \text{``Confor.''} = \text{``Con}$ $= \text{``Con}$ $= \text{``Luiga} \cdot 1.1926 = 0.05$ b 0.05 $\theta u := \frac{Lviga \cdot M}{2}$	for." Entra = 1.662 Entra c 0.2 $\frac{Ay}{c} = 0.001 rad$	r en la segunda co r en la tercera co 0.010 0.0	olumna lumna)25 0
- Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede	$if\left(Vs > \frac{3}{4} \cdot Vactuan\right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt := 0.05$ ncia: $Ic := -$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ a 0.025 ct := 0.2 $b \cdot h^{3}$ $12 = 0.003 m^{4}$	$= \text{``Confor.''} = \text{``Con}$ $= \text{``Confor.''} = \text{``Con}$ $= 0 \cdot 10$ b 0.05 $\theta y := \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$	for." Entra = 1.662 Entra c 0.2 $\frac{dy}{c} = 0.001 rad$	r en la segunda co r en la tercera co 0.010 0.0	olumna lumna)25 0
- Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede	$if\left(Vs > \frac{3}{4} \cdot Vactuan\right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt := 0.05$ ncia: $Ic := -1$ nto último: $\theta u := -1$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ a 0.025 ct := 0.2 $\frac{b \cdot h^{3}}{12} = 0.003 m^{4}$ hu + at = 0.026 rad	$= \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \frac{0.10}{0.05}$ $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$ $Mu \coloneqq Mu \leftarrow 0.$	for." Entra = 1.662 Entra c 0.2 $\frac{dy}{c} = 0.001 rad$ $.05 \cdot Ec \cdot Ic \cdot 0.3 \cdot$	r en la segunda con ren la tercera co $0.010 \qquad 0.0$	olumna lumna)25 0
- Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede *Rotación y mome	$if\left(Vs > \frac{3}{4} \cdot Vactuan\right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt := 0.05$ ncia: $Ic := -5$ ento último: $\theta u := 5$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ $a \\ 0.025$ ct := 0.2 $\frac{b \cdot h^3}{12} = 0.003 \ m^4$ $\theta y + at = 0.026 \ rad$	$= \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \frac{1.1926}{0.05} = \frac{b}{0.05}$ $\theta y \coloneqq \frac{b}{0.05}$ $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$ $Mu \coloneqq My + \frac{0}{100}$	for." Entra = 1.662 Entra c 0.2 $\frac{dy}{c} = 0.001 rad$ $05 \cdot Ec \cdot Ic \cdot 0.3 \cdot$ m	r en la segunda co r en la tercera co 0.010 0.0 $(\theta u - \theta y) = 128$	olumna lumna)25 0 48.18 <i>kgf</i> •
- Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede *Rotación y mome	$if \left(Vs > \frac{3}{4} \cdot Vactuan \right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt := 0.05$ ncia: $Ic := -1$ ento último: $\theta u :=$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ $a_{0.025}$ ct := 0.2 $\frac{b \cdot h^3}{12} = 0.003 \ m^4$ $\theta y + at = 0.026 \ rad$	$= \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \frac{1.1926}{0.05} = \frac{0.05}{0.05}$ $\theta y := \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$ $Mu := My + \frac{0.05}{0.05}$	for." Entra = 1.662 Entra c 0.2 $\frac{dy}{c} = 0.001 rad$ $.05 \cdot Ec \cdot Ic \cdot 0.3 \cdot$ m = 2060 172 h = f	r en la segunda con r en la tercera con 0.010 0.0 $(\theta u - \theta y) = 128$	olumna lumna 025 0 48.18 <i>kgf</i> •
 Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede: *Rotación y mome *Rotación y mome 	$if \left(Vs > \frac{3}{4} \cdot Vactuan \right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}} xc$ $\leq 3 (0.25)$ $bt := 0.05$ ncia: $Ic := -1$ ento último: $\theta u := 0$ ento residual: $\theta r := 0$	$f(x) = \frac{1}{12}$ $f(x) = 1$	$= \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Conformation} = 0$ $= \frac{0 \cdot 10}{0 \cdot 10} = \frac{b}{0.05}$ $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$ $Mu \coloneqq My \coloneqq My + \frac{0}{2}$ $Mr \coloneqq My \cdot ct = 0$	for." Entra = 1.662 Entra c 0.2 $\frac{Ay}{bc} = 0.001 rad$ $.05 \cdot Ec \cdot Ic \cdot 0.3 \cdot m$ = 2060.173 kgf ·	r en la segunda c r en la tercera co 0.010 0.0 $\frac{(\theta u - \theta y)}{2} = 128$ m	olumna lumna 025 0 48.18 <i>kgf</i> •
- Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede *Rotación y mome *Rotación y mome *Criterios de acept	if $\left(Vs > \frac{3}{4} \cdot Vactuan\right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ bt := 0.05 ncia: $Ic := -\frac{1}{2}$ ento último: $\theta u := 0$ ación: $\theta r := 0$) nte, "Confor.", "No co $cal := \frac{8.62}{0.30 \cdot 0.45 \cdot \sqrt{210}}$ $a \\ 0.025$ ct := 0.2 $\frac{b \cdot h^3}{12} = 0.003 \ m^4$ $\theta y + at = 0.026 \ rad$ $\theta y + bt = 0.051 \ rad$	= ``Confor.'' = ``Confor.'' = ``Confor.'' = ``Confor.'' = ``Confor.'' = ``Conformation = ``Conformation = ``Onformation	for." Entra = 1.662 Entra c 0.2 $\frac{dy}{c} = 0.001 \ rad$ $05 \cdot Ec \cdot Ic \cdot 0.3 \cdot m$ = 2060.173 kgf ·	r en la segunda c r en la tercera co 0.010 0.0 $(\theta u - \theta y) = 128$ m	olumna lumna 025 0 48.18 <i>kgf</i> •
 Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede *Rotación y mome *Rotación y mome *Criterios de acept ≤0.0 C 	$if \left(Vs > \frac{3}{4} \cdot Vactuan \right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}}$ $\leq 3 (0.25)$ $bt := 0.05$ $ncia: Ic := -2$ $ento último: \theta u := 0$ $ación: esidual: \theta r := 0$ $\leq 3 (0.25)$	$f(x) = \frac{1}{12} + \frac{1}{12} = 0.003 \ m^4$	= ``Confor.'' = ``Con $= ``Confor.'' = ``Con$ $= ``Onfor.'' = ``Con$ $= ``Onfor.'' = ``Onformation$ $= 0.05$ $= 0.05$	for." Entra = 1.662 Entra c 0.2 $\frac{dy}{c} = 0.001 \ rad$ $05 \cdot Ec \cdot Ic \cdot 0.3 \cdot m$ = 2060.173 kgf \cdot 0.2	r en la segunda c r en la tercera co 0.010 0.0 $(\theta u - \theta y) = 128$ m IO I 0.010 0.0	olumna lumna 025 0 48.18 kgf •
 Tercera columna: ≤0.0 C at := 0.025 *Rotación de cede *Rotación y mome *Rotación y mome *Criterios de acept ≤0.0 C 	$if \left(Vs > \frac{3}{4} \cdot Vactuan \frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}} \right)$ $\leq 3 (0.25)$ $bt := 0.05$ $ncia: Ic := -$ $ento último: \theta u := 0$ $ento residual: \theta r := 0$ $\leq 3 (0.25)$) nte, "Confor.", "No constraints of the equation of the e	$= \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Confor.''} = \text{``Conformation} = 0.05$ $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$ $Mu \coloneqq My \vdash \frac{0}{6}$ $Mr \coloneqq My \cdot ct = 0.05$	for." Entra = 1.662 Entra c 0.2 $\frac{Ay}{C} = 0.001 rad$ $.05 \cdot Ec \cdot Ic \cdot 0.3 \cdot$ m = 2060.173 kgf \cdot 0.2	r en la segunda c r en la tercera co 0.010 0.0 $(\theta u - \theta y) = 128$ m <i>IO I</i> 0.010 0.0	olumna lumna 025 0 48.18 <i>kgf</i> •
- Tercera columna: ≤ 0.0 C at := 0.025 *Rotación de cede *Rotación y mome *Rotación y mome *Criterios de acept ≤ 0.0 C	$if \left(Vs > \frac{3}{4} \cdot Vactuan}{Vs > \frac{3}{4} \cdot Vactuan} \right)$ $\frac{Vactuante}{b \cdot d \cdot \sqrt{f'c}} xd$ $\leq 3 (0.25)$ $bt := 0.05$ $ncia: Ic := -i$ $ento último: \theta u := 0$ $ento residual: \theta r := 0$ $\leq 3 (0.25)$	$f(x) = \frac{1}{12} = 0.003 \ m^4$ $f(x) = 0.025 \ rad$	= ``Confor.'' = ``Con $= ``Confor.'' = ``Con$ $= ``Onfor.'' = ``Con$ $= ``Onfor.'' = ``Onformation$ $= 0.05$ $= 0.05$ $= 0.05$	for." Entra = 1.662 Entra c 0.2 $\frac{Ay}{bc} = 0.001 rad$ $.05 \cdot Ec \cdot Ic \cdot 0.3 \cdot m$ = 2060.173 kgf $\cdot 1000$ 0.2	r en la segunda c r en la tercera co 0.010 0.0 $\frac{(\theta u - \theta y)}{0.010} = 128$ m <i>IO I</i> 0.010 0.0 5 := 0.025	olumna lumna 025 0 48.18 kgf • (25 0) CP := 0.0

$$A = \frac{E c \cdot \xi y \cdot b}{2} = 684.718 \frac{\text{formef}}{\text{m}} \qquad B = fy \cdot (As + A's) = 66.505 \text{ formef}$$

$$D = -(fy \cdot (A's \cdot d' + A \cdot d)) = -19.952 \text{ formef} \cdot m \qquad cm = \frac{-B + \sqrt{B' - 4 \cdot A \cdot D}}{2 \cdot A} = 122.801 \text{ cm} \qquad \text{Performitial del eje} = centro de terms experiente comparison to ha cetide:
$$\varepsilon^{(m)} = 0.0052 \qquad f's = Fs \cdot \varepsilon^{(m)} = fs$$$$

s'e- ^{eg} (^e ^a) _	-0.00051 f'c	5's. E 1012 KG	, ^{ng} j	if (s'e - con "	ok" "No am	nnle") – "el-	"
$es:=\frac{d-c}{d-c}$	- 0.00051 J s	$e s \cdot Es = 1013.52$		$\mathbf{n}(cs < cy, $	ok, no cui	(pre) = 0k	
- Luego, se define la resu	ltante de tracción y con	npresión:					
$Cc1 := 0.85 \cdot f'c \cdot (c$	$(-m) \cdot h = 2.679$ ton	cf $Cc2 := 0.85$	$f'_{c} \cdot \frac{m}{m} \cdot b = 32$	868 tonnef	$Cs := A's \cdot f$	s = 6.018 to	nnef
0011=0.00 j 0 (0	110) 0 = 2.010 0011	0.00	2	lieve vermej	$T := A_{S} \cdot f_{H}$	-41566 tor	nef
- Por último obtenemos l	a curvatura cedente v el	momento cedente			1 •= 110 · j 9	- 11.500 001	uncj
$\phi u := \frac{\varepsilon y}{\varepsilon y} = 0.00$	$165 \frac{1}{-}$						
$\varphi g = (d-c)^{-0.00}$	m						
$My \coloneqq Cc1 \cdot \left(d - \frac{(c)}{(c)}\right)$	$\left(\frac{-m}{2}\right) + Cc2 \cdot \left(d - c \cdot d\right)$	$+\frac{2 \cdot m}{3} + Cs \cdot (d$	-d') = 16887.6	2 kgf∙m			
		, 1 (11 ACCE)	41 12)				
5. DIAGRAMA MOMENTO	$b = 6000 \frac{kgf}{kgf}$	b = 0.85 f'c	$\begin{pmatrix} fb \\ fb \end{pmatrix} = 0$	021	s = 0.007	A's	- 0.004
- Primera columna: J	$p = 0000 \frac{1}{cm^2}$	$b = 0.85 \cdot \frac{1}{fy} \cdot \beta 1$	$\cdot \left(\frac{fb + fy}{fb + fy} \right) = 0.$	$\rho = \frac{1}{b}$	$\overline{d} = 0.007$	$\rho \coloneqq \frac{1}{b \cdot d}$	=0.004
$xcal \coloneqq \frac{p-p}{ab} = 0.13$	38			Entra	r en la prime	ra columna	
ρο		9		dbc^2			
Se usó estribos de 3/3 Separación entre estr	8" en dos ramas: dbe : ibos: sep := 10 cm	$=\frac{3}{8}$ in $= 0.953$ cr	$n Ae := \frac{\pi}{n}$	$\frac{abe}{4} = 0.713$ c	$cm^2 Av$	$=2 \cdot Ae = 1.4$	25 cm ²
$Vs := \frac{Av \cdot fy \cdot d}{1 - 2} = 2$	26934.669 kgf	$Vactuante := -\frac{2}{3}$	$\frac{2 \cdot My}{1} = 14.132$	tonnef			
sep			Lviga				
- Segunda columna: if	$E\left(sep \leq \frac{d}{3}, \text{``Confor.''}\right)$, "No confor." $=$	"Confor."				
if(V.	$s > \frac{3}{4} \cdot Vactuante, "C$	Confor." , "No cor	(for.") = ``Conformation	or." Entra	r en la seguno	la columna	
	Vactuante	14.132	1 1000				
- Tercera columna: y := -	$b \cdot d \cdot \sqrt{f'c}$	$0.30 \cdot 0.45 \cdot \sqrt{210}$	$ \cdot 1.1926 = 2$ $\cdot 10$	2.724 Entra colum	r en la tercer: na	a	
≤0.0 C	≤3 (0.25)	$a_{0.025}$	b 0.05	c 0.2	0.010	0.025	0.05
≥0.5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
	0.129	1. 0.025	h1. 0.05	-1.00			
$x1 \coloneqq 0$ $xcal$	=0.138 a	1 = 0.025	b1 = 0.05	$c1 \coloneqq 0.2$			
$x_2 \coloneqq 0.5$		2 := 0.02	02 = 0.03	$c_2 \coloneqq 0.2$			
$at := (a2 - a1) \cdot \frac{(xa)}{(xa)}$	$\frac{xal-x1)}{x^2-x1)} + a1 = 0.024$	L I	$bt := (b2 - b1) \cdot \frac{b}{b}$	$\frac{(xcal-x1)}{(x2-x1)} + b$	1 = 0.044		
$ct := (c2 - c1) \cdot \frac{(xc)}{(x)}$	$\frac{al-x1}{2-x1} + c1 = 0.2$						
(- ^w ') h.h ³		Lyina . Ma				
*Rotación de cedencia:	$Ic := \frac{b \cdot n}{12}$	$= 0.003 \ m^4 \qquad 6$	$\partial y \coloneqq \frac{E c i g u \cdot i N_{i}}{6 \cdot E c \cdot I c}$	-=0.001 <i>rad</i>			
*Rotación y momento úl	timo: $\theta u \coloneqq \theta y + a$	$t = 0.025 \ rad$ 1	$Mu := My + \frac{0.05}{2}$	$\frac{5 \cdot Ec \cdot 1c \cdot 0.3 \cdot m}{m}$	$\frac{(\theta u - \theta y)}{(\theta u - \theta y)} =$	19294.329 k	gf∙m
*Rotación y momento re	sidual: $\theta r \coloneqq \theta y + bt$	= 0.045 rad 1	$Mr \coloneqq My \cdot ct = 3$	3377.524 kgf •	m		
*Criterios de aceptación:							
•					ΙΟ	LS	CP
					a	b	c
≤0.0 C	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.0
≥0.5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.
$x1 \coloneqq 0$ $xcal$	= 0.138 a	1 := 0.010	b1 := 0.025	$c1 \coloneqq 0$.05		
x2 := 0.5	a	2 := 0.005	b2 := 0.02	c2 := 0	.03		
				(mark 1)			
$IO \coloneqq (a2-a1) \cdot \frac{(x)}{a}$	$\frac{cai - x_1}{2} + a_1 = 0.009$	9	$LS \coloneqq (b2 - b1)$.	$\frac{(xcai - x1)}{(xcai - x1)} + b$	b1 = 0.024		
	<u>~9</u> ~1)			(-1)			
	$(x^2 - x^1)$,	(x2-x1)			

$A \coloneqq \frac{Ec \cdot \varepsilon y \cdot b}{2} = 684.718 \frac{tonn}{m}$	ef	$B \coloneqq fy \cdot (As -$	+A's) = 99.758	tonnef		
			$\sqrt{B^2 - 4 \cdot 4 \cdot 1}$	- D		
$D \coloneqq -(fy \cdot (A's \cdot d' + As \cdot d)) = -$	-16.707 tonnef • m	$c \coloneqq \frac{-D+}{2}$	$\frac{2 \cdot A}{2 \cdot A}$	$= 9.951 \ cm$	Profundida neutro	d del eje
- Al obtener la profundidad del eje neu	tro, se verifica que el a	cero superior a	compresión no h	a cedido:		
$\varepsilon' \varepsilon = \varepsilon y \cdot (c - d') = 0.00016$	$f'_e - E_e \cdot \epsilon'_e - 31$	4 07 kgf	if (s'e	cen "ok" "no c	umple") – "	ok"
d-c	J 3 - D3 · C 3 - 51	$\frac{1}{cm^2}$	11 (235	$\langle eg, ok, noc$	umpie) –	OK
- Además verificamos que el concreto	tenga un comportamier	nto elástico:				
$fclimite \coloneqq 0.70 \cdot f'c = 147 \frac{kg}{cm^2}$	 Esfuerzo límite de concreto 	comportamient	o elástico del			
$\varepsilon c \coloneqq \frac{\varepsilon y \cdot c}{(d-c)} = 0.0006$	$\mathbf{if}(\varepsilon c < \varepsilon c u, \mathrm{``ok''})$	', "No cumple	e") = "ok"			
$fc \coloneqq Ec \cdot \varepsilon c = 129.601 \frac{kgf}{cm^2}$	$\mathbf{if}(fc < fclimite)$, "ok" , "no cur	mple") = "ok"			
College la grantente de transitiones						
- Se define la resultante de tracción y c $fc \cdot c \cdot b$	compression:					
$Cc \coloneqq \frac{f^{\circ} \circ \sigma^{\circ}}{2} = 19.345 \text{ tonnef}$	$T \coloneqq As \cdot f$	y = 24.94 ton	nef	$Cs \coloneqq A's \cdot f's \equiv 5$	5.595 tonne j	f
- Por último obtenemos la curvatura ce	dente y el momento ce	dente:				
$\phi u := \frac{\varepsilon y}{1} = 0.005992 \frac{1}{1}$	5					
$\varphi g = \frac{1}{d-c} = 0.003332 \frac{1}{m}$						
2						
$My \coloneqq Cc \cdot \frac{-}{3} \cdot c + Cs \cdot (c - d') + \frac{-}{3}$	$T \cdot (d - c) = 10171.02$	2 kgf ∙ m				
5. DIAGRAMA MOMENTO - ROTA	CIÓN (Usando las tabl	as ASCE 41-13				
$\frac{kg}{kg}$	f f'	$c_{\beta 1} (fb)$	-0.021	As = 0.00	$A \qquad A' = A$	s' = 0.01
- Primera columna. $J 0 = 0000$ —	$\frac{1}{p^2}$ $\rho_0 = 0.85 \cdot \frac{1}{f_s}$	$\frac{-b}{4} \frac{-b}{fb+f}$	$\frac{-}{y} = 0.021$	$\rho \coloneqq \frac{1}{b \cdot d} \equiv 0.004$	$\mu := \frac{\rho}{b}$	-=0.01
a - a'						
$\frac{p-p}{l} = -0.414$				Entrar en la prin	nera column	a
ρυ						
Se usó estribos de 3/8" en dos ram:	as: $dhe = \frac{3}{10} = 0.0$	$53 \mathrm{cm}$ Ae	$\frac{\pi \cdot dbe^2}{2}$	$0.713 cm^2 A$	$v := 2 \cdot Ae - \frac{1}{2}$	1 425 cm
	8		4	0.110 Cm 11	02.110-	1.120 010
Separation entre estribos: $sep := 1$ $Av \cdot fv \cdot d$	10 <i>cm</i>	$2 \cdot M u$				
$Vs := \frac{35}{sep} = 26934.669 \ kg$	of Vactuant	$e \coloneqq \frac{s}{L_{viag}} = 1$	5.035 tonnef			
sep (LUIGU				
- Segunda columna: $\mathbf{if}\left(sep \le \frac{d}{3}, "e^{ip}\right)$	Confor.", "No confo	$\mathbf{r."} = "Confor$	"			
$if\left(Vs > \frac{3}{4} \cdot Vactu$	uante, "Confor.", "N	[o confor."] =	"Confor."	Entrar en la segu	unda column	a
Vactuante	5.03	5				
- Tercera columna:	xcal :=	• 1.1	926 = 0.971	Entrar en la terc	era columna	
$b \cdot d \cdot \sqrt{f'c}$	$0.30 \cdot 0.45 \cdot 1$	/210•10				
		b	c			
≤0.0 C ≤3 (0.2	5) 0.025	0.05	0.2	0.010	0.025	0.05
at := 0.025 $bt := 0.05$	$ct \coloneqq 0.2$					
	1 1 3	T	M			
*Rotación de cedencia: Ic:	$=\frac{0 \cdot n}{1} = 0.003 \ m^4$	$\theta y \coloneqq \frac{Lvi}{dt}$	$\frac{ga \cdot My}{2} = 0.00$	1 rad		
	12	- 6·	$Ec \cdot Ic$			
*Potoción y momento último:	$-A_{u} + a_{t} = 0.026$ mg	d Mar Ma	$0.05 \cdot Ec \cdot Id$	$c \cdot 0.3 \cdot (\theta u - \theta y)$	- 19719 99	haf m
Rotación y momento utimo: θu	-0y + ui = 0.020 ra	u IVI u := IVI y	/	m	- 14/10.33	≏ ≂yj•า∩
*Rotación y momento residual: θr :	$= \theta y + bt = 0.051$ rad	$d \qquad Mr \coloneqq My$	$\cdot ct = 2034.204$	1 kgf ∙ m		
*Criterios de aceptación:						
				10	LS	CP
≤0.0 C ≤3 (0.2	5) 0.025	0.05	0.2	0.010	0.025	0.05
			10	• •		
			IO := 0.010	LS := 0.025	$CP \coloneqq 0$	0.05

$$A = \frac{Ec \cdot \varepsilon y \cdot b}{2} = 684.718 \frac{tonnef}{m} \qquad B = fy \cdot (As + A's) = 99.758 tonnef$$

$$D = -(fy \cdot (A's \cdot d' + As \cdot d)) = -33.172 tonnef \cdot m \qquad c := \frac{-B + \sqrt{B^2 - 4 \cdot A \cdot D}}{2 \cdot A} = 15.9 cm \qquad \text{Profundidad del eje neutro}$$

$$- \text{Al obtener la profundidad del eje neutro, se verifica que el acero superior a compresión no ha cedido:
$$\varepsilon's := \frac{\varepsilon y \cdot (c - d)}{d - c} = 0.00086 \qquad f's := Es \cdot \varepsilon's = 1710.135 \frac{kgf}{cm^2} \qquad \text{if } (\varepsilon's < \varepsilon y, \text{``ok''}, \text{``no cumple''}) = \text{``ok''}$$

$$- \text{Además verificamos que el concreto tenga un comportamiento elástico:}$$

$$fctímite := 0.70 \cdot f'c = 147 \frac{kgf}{cm^2} \qquad \text{Esfuerzo limite de comportamiento elástico del concreto concreto tenga un comportamiento elástico del concreto de concreto tenga un comportamiento elástico del concreto tenga un comportamiento elástico.
$$\varepsilon c := \frac{\varepsilon y \cdot c}{(d - c)} = 0.00125 \qquad \text{if } (\varepsilon c < \varepsilon cu, ``ok'', ``no cumple'') = ``ok''$$

$$fc := Ec \cdot \varepsilon c = 271.126 \frac{kgf}{cm^2} \qquad \text{if } (fc < fclímite, ``ok'', ``no cumple'') = ``oc cumple'')$$

$$- \text{Debido a que no cumple, se debe plantear que el concreto se comporte de forma no lineal. Se establece un modelo bilineal equivalente (elasto-plástico). Para ello, se define una deformación elástica del concreto de 0.0008 \qquad f_{c} = \frac{\varepsilon}{c_{c}} + \frac{10.70fc < fc \le fc}{c_{c}} + \frac{fc}{c_{c}} + \frac{10.60fc}{c_{c}} + \frac{fc}{c_{c}} + \frac{fc}{c_{c}}$$$$$$

 $Cc1 = 0.85 \ f'c \cdot (c-m) \cdot b \quad \text{Compressión} \\ en \ el \ concreto} \\ (Area \ rectangular) \quad Cc2 = \frac{0.85 \ f'c \cdot m \cdot b}{2} \quad \begin{array}{c} \text{Compressión} \\ en \ el \ concreto} \\ (Area \ rectangular) \end{array}$ $Cc3 = A's \cdot f's \quad \text{Compressión en el} \\ acero \ superior \quad acero \ inferior \quad C=Cc1 + Cc2 + Cs \quad \text{Compressión resultante} \end{array}$

$$\begin{array}{ll} 0.85 \ f'c \cdot \left(c - \frac{m}{2}\right) \cdot b + A's \cdot f's = As \cdot fy & 0.85 \ f'c \cdot \left(c - \frac{m}{2}\right) \cdot b = As \cdot fy - A's \cdot f's \\ \varepsilon'_s = \frac{\varepsilon_y \cdot (c - d')}{d - c} & f's = Es \cdot \varepsilon'_s & 0.85 \ f'c \cdot \left(c - \frac{m}{2}\right) \cdot b = As \cdot fy - A's \cdot fy \cdot \frac{(c - d')}{d - c} \\ m = \frac{\varepsilon_{cy} \cdot (d - c)}{\varepsilon_y} & c = \frac{As \cdot fy - \frac{A's \cdot fy \cdot (c - d')}{d - c}}{0.85 \ f'c \cdot b} - \frac{\varepsilon_{cy} \cdot (d - c)}{2 \ \varepsilon_y} \\ c \cdot \left(1 + \frac{\varepsilon_{cy}}{2 \ \varepsilon_y}\right) \cdot (0.85 \ f'c \cdot b) \cdot (2 \ \varepsilon_y) = 2 \ \varepsilon_y \cdot \left(As \cdot fy - \frac{A's \cdot fy \cdot (c - d')}{d - c}\right) + 0.85 \cdot f'c \cdot b \cdot \varepsilon_{cy} \cdot d \end{array}$$

- Ecuación para determinar el eje neutro de la sección:

$$c^{2} \cdot (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b) -c \cdot ((2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b \cdot d) + 2 \cdot \varepsilon y \cdot f y \cdot (As + A's) + 0.85 \cdot f' c \cdot b \cdot \varepsilon c y \cdot d) + 2 \cdot \varepsilon y \cdot f y \cdot (As \cdot d + A's \cdot d') + 0.85 \cdot f' c \cdot b \cdot \varepsilon c y \cdot d^{2} = 0 A := (2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f' c \cdot b) = 2.678 \frac{tonnef}{m}$$

 $B \coloneqq -((2 \cdot \varepsilon y + \varepsilon c y) \cdot (0.85 \cdot f'c \cdot b \cdot d) + 2 \cdot \varepsilon y \cdot f y \cdot (As + A's) + 0.85 \cdot f'c \cdot b \cdot \varepsilon c y \cdot d) = -1.744 \text{ tonnef}$ $D \coloneqq 2 \cdot \varepsilon y \cdot f y \cdot (As \cdot d + A's \cdot d') + 0.85 \cdot f'c \cdot b \cdot \varepsilon c y \cdot d^{2} = 0.217 \text{ tonnef} \cdot m$ - Profundidad del eje neutro:

i forunaiaua der eje neutro.	$c := \frac{-B - \sqrt{B^2 - 4 \cdot A \cdot D}}{16.783} = 16.783 \text{ cm}$	$m = \min\left(\frac{\varepsilon cy \cdot (d-c)}{c}, c\right) = 9.862 \text{ cm}$	
	2•A	(εy)	

- Al obtener la profu , $\varepsilon y \cdot (c-d)$	ndidad del eje neutro, se ver	rifica que el acero supe	rior a compresion kgf	on no ha ce	dido:	1 1 1	,
$\varepsilon's \coloneqq \frac{c}{d-c}$	f's := 0.00096 $f's :=$	$\varepsilon's \cdot Es = 1911.673$	$\frac{cm^2}{cm^2}$	if $(\varepsilon' s < \varepsilon y)$	/, "ok", "No cu	mple") = "o	ok"
- Luego, se define la	resultante de tracción y cor	npresión:					
$Cc1 \coloneqq 0.85 \cdot f'c \cdot (c$	$(-m) \cdot b = 37.062 \ tonney$	$f \qquad Cc2 \coloneqq 0.85 \cdot f'$	$c \cdot \frac{m}{2} \cdot b = 26.4$	105 tonne	$\begin{array}{l} \mathbf{f} Cs \coloneqq A's \cdot f \\ T \coloneqq As \cdot fy \end{array}$	s = 11.351 = 74.819 t	tonnef onnef
- Por último se obtie	ne la curvatura cedente y el	momento cedente:			50		
$\phi y \coloneqq \frac{\varepsilon y}{(d-c)} =$	$0.0081 \frac{1}{m}$						
$My \coloneqq Cc1 \cdot \left(d - d\right)$	$-\frac{(c-m)}{2} ight)+Cc2\cdot\left(d-c\cdot\right)$	$+\frac{2\cdot m}{3}+Cs\cdot (d-d)$	l') = 27379.458	8 kgf∙m			
. DIAGRAMA MOME	NTO - ROTACIÓN (Usand	o las tablas ASCE 41-7	3)				
- Primera columna:	$fb \coloneqq 6000 \frac{kgf}{cm^2} \qquad \rho$	$bb \coloneqq 0.85 \cdot \frac{f'c}{fy} \cdot \beta 1 \cdot \left(-\frac{f'c}{fy} \cdot \beta 1 \right) \right)$	$\left(\frac{fb}{fb+fy}\right) = 0.02$	21 ρ:=	$=\frac{As}{b \cdot d}=0.014$	$\rho' \coloneqq \frac{A'}{b \cdot}$	$\frac{s}{d} = 0.005$
$xcal := \frac{\rho - \rho'}{ch} =$	0.437				Entrar en la pr	imera colu	mna
ρο		9	a di	ha^2			
Se usó estribos d Separación entre	e 3/8" en dos ramas: <i>dbe</i> : estribos: <i>sep</i> := 10 <i>cm</i>	$=\frac{3}{8}$ in = 0.953 cm	$Ae \coloneqq \frac{\pi \cdot a}{4}$	= 0.71	$13 \ cm^2 Av :$	$= 2 \cdot Ae = 1$.425 cm ²
$Vs \coloneqq \frac{Av \cdot fy \cdot d}{sen}$	$-=25540.052 \ kgf$ V	$Vactuante := \frac{2 \cdot My}{Lviaa}$	=13.554 tonn	ef			
- Segunda columna:	if(sen < d "Confor"	"No confor ") $-$ "C	onfor "				
- Segunda corumna.	$\lim_{n \to \infty} (sep \le \frac{1}{3})$, contor.	(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,				
i	$f\left(Vs > \frac{3}{4} \cdot Vactuante, "C$	Confor." , "No confo	() = "Confor."	"	Entrar en la seg	gunda colu	mna
Tanaana aalummaa a	Vactuante	13.554	/	9.756	Entury on la tor		
- Tercera columna: y	$= \frac{1}{b \cdot d \cdot \sqrt{f'c}} \qquad $	$0.30 \cdot 0.4267 \cdot \sqrt{210} \cdot$	$10^{-1.1920} =$	2.730	Entrar en la tel	rcera coluli	ina
	<3 (0.25)	a 0.025	b		0.010	0.025	0
0.5 C	≤3 (0.25) ≤3 (0.25)	0.02	0.03	0.2	0.010	0.025	0
r1 - 0	rcal = 0.437	a1 = 0.025	b1 = 0	05	c1 = 0.2		
x1 := 0 $x2 := 0.5$	xcut = 0.437	a1 = 0.025 a2 = 0.02	b1 := 0. b2 := 0.	03	c1 = 0.2 c2 = 0.2		
	(xcal - x1)		(<i>r</i>	cal - x1			
at := (a2 - a1).	$\frac{(x(ax-x))}{(x^2-x^1)} + a^1 = 0.021$	bt :=	$=(b2-b1)\cdot\frac{(x)}{(x)}$	$\frac{cat}{x2-x1}$	+b1 = 0.033		
$ct \coloneqq (c2 - c1) \cdot \cdot$	$\frac{(xcal - x1)}{(x2 - x1)} + c1 = 0.2$						
*Rotación de cedenc	ia: $Ic := \frac{b \cdot h^3}{12}$	$= 0.003 \ m^4 \qquad \theta y:$	$=\frac{Lviga \cdot My}{c}$	=0.003 ra	ıd		
	12		0.05	$Ec \cdot Ic \cdot 0$	$.3 \cdot (\theta u - \theta u)$		
*Rotación y moment	to último: $\theta u \coloneqq \theta y + a$	t=0.023 rad Mu	=My +	m	= (***********	29481.926	$kgf \cdot m$
*Rotación y moment	to residual: $\theta r \coloneqq \theta y + bt$	$t = 0.035 \ rad Mr$	$= My \cdot ct = 54$	75.892 kg	ıf∙m		
*Criterios de aceptad	eión:				•		
					ΙΟ	LS	CP
0.0 C	≤3 (0.25)	0.025	0.05	0.2	a 0.010	b 0.025	$c \\ 0.05$
0.5 C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
x1 := 0		a1 := 0.010	b1 := 0.	025	$c1 \coloneqq 0.05$		
x2 := 0.5	x cal = 0.437	a2 := 0.005	b2 := 0.	02	$c2 \coloneqq 0.03$		
	(xcal-x1)		(12 1) (xcal - x1)	. 14 0		
$IO \coloneqq (a2 - a1)$	$\frac{1}{(x2-x1)} + a1 = 0.00$	$6 \qquad LS$	$=(b2-b1)\cdot$	(x2-x1)	+b1 = 0.021		
$CP := (c^2 - c^1)$	$\frac{(xcal-x1)}{xcal-x1} + c1 - 0.03$	3					

Δ	$\underline{Ec \cdot \varepsilon y \cdot b}$	684 718 tonnef	F	$R := fu \cdot (As + A's)$	-49.879 to	mnef		
	2	m		,		innej		
L	$D \coloneqq -(fy \cdot (A's \cdot d))$	$d' + As \cdot d)) = -12.4$	7 tonnef ∙ m	$c \coloneqq \frac{-B + \sqrt{B}}{2}$	$\frac{^{2}-4\cdot A\cdot D}{\cdot A}$	=10.336 <i>cm</i>	Profundidad neutro	d del eje
- Al o	obtener la profund	lidad del eie neutro, se	e verifica que el ace	ro superior a comr	presión no ha c	edido:		
ε	$s := \frac{\varepsilon y \cdot (c - d')}{d - c}$	-=0.00032 f	$\varepsilon's := Es \cdot \varepsilon's = 646.$	$47 \frac{kgf}{cm^2}$	$\mathbf{if}(arepsilon's < arepsilon)$	<i>y</i> , "ok", "no c	cumple") = "e	ok"
- Ade	emás verificamos	que el concreto tenga	un comportamiento	elástico:				
f	$climite \coloneqq 0.70$ •	$f'c = 147 \frac{kgf}{cm^2}$ E	Esfuerzo límite de co concreto	omportamiento elá	stico del			
ε	$c \coloneqq \frac{\varepsilon y \cdot c}{(d-c)} = 0.$	00063	$\mathbf{if}(\varepsilon c < \varepsilon c u, "ol$	«", "No cumple'	")="ok"			
f	$c \coloneqq Ec \cdot \varepsilon c = 136$	$5.104 \frac{kgf}{cm^2}$	$\mathbf{if}(fc < fclimite)$	e, "ok", "no cum	ple") = "ok"			
-Se d	efine la resultante	e de tracción y compre	esión:					
0	$fc \cdot c \cdot b$	01 101 toppof	$T = \Lambda_{a} f_{a} = 2\Lambda_{a}$	04 tonnaf	$C_{\alpha} = \Lambda'_{\alpha}$	$f'_{e} = 3,830$	mmof	
Ľ	2	1.101 tonnej	$1 = A3 \cdot Jy = 24$	1.94 tonnej	03-43	• J S = 3.859 U	ninej	
- Por	último obtenemo	s la curvatura cedente	v el momento cede	nte:				
- 1 01	$\varepsilon y = \frac{\varepsilon y}{\varepsilon y} = 0.0$	$1061 \frac{1}{}$	y el momento cede.	inte.				
φ	d-c	m m						
Л	$Ay \coloneqq Cc \cdot \frac{2}{3} \cdot c +$	$-Cs \cdot (c-d') + T \cdot (d)$	l-c) = 10303.879	kgf·m				
5 DI			(Usen de les tebles	ASCE 41 12)				
5. DI		$\frac{1}{kgf}$	f'_{c}	fb	0.091	As 0.00		's 0.00
- Prir	nera columna:	$Jb \coloneqq 6000 - \frac{cm^2}{cm^2}$	$\rho o \coloneqq 0.85 \cdot \frac{1}{fy}$	$\left(\frac{fb+fy}{fb+fy}\right) =$	0.021ρ	$= \frac{1}{b \cdot d} = 0.004$	$4 \rho \coloneqq \frac{1}{b} \bullet$	d = 0.00
f	$\rho - \rho'$				F			
	$\frac{1}{\rho b} = 0$				E	ntrar en la pril	nera columna	a
	<i>(</i> , 1 1	2/011 1	3 0.055	1 7	$\mathbf{\tau} \cdot dbe^2$	1 ² 4		1 405
3	e uso estribos de	$\frac{3}{8}$ en dos ramas: <i>a</i>	$be \coloneqq -\frac{n}{8} = 0.953$	Ae := -	$\frac{1}{4} = 0.7$	13 C A	$v \coloneqq 2 \cdot Ae \equiv 1$	1.425 CM
	$Av \cdot fy \cdot d$	stribos: $sep \coloneqq 10$ Ch	Z 2	•My 5 101 4				
V	$s \coloneqq \frac{s}{sep}$	= 20934.009 kyj	Vactuante := -I	= 5.101 to	nnej			
- Seg	unda columna:	$\mathbf{if}\left(sep \leq \frac{d}{3}, \text{``Conference}\right)$	or.", "No confor."	$\left(\right) = $ "Confor."				
	if	$Vs > \frac{3}{4} \cdot Vactuante$	e, "Confor.", "No	$\left(\operatorname{confor.}^{*} \right) = \operatorname{"Con}^{*} $	nfor." E	ntrar en la seg	unda column:	a
	V	actuante	5 101	,				
- Ter	cera columna: —	$\frac{1}{1}$ $\frac{\sqrt{\alpha}}{2}$ $xcal$		• 1.1926	= 0.983 E	ntrar en la terc	era columna	
	0.	$a \cdot \sqrt{jc}$	$0.30 \cdot 0.45 \cdot \sqrt{2}$	10.10				
<0.0	C	<3 (0.25)	0.025	0.05		0.010	0.025	0.05
0.0	t := 0.025	bt := 0.05	ct := 0.2	0.02	0.2	0.010	0.025	0.05
*Rot	ación de cedencia	$: Ic := \frac{b \cdot i}{c}$	$\frac{h^3}{2} = 0.003 \ m^4$	$\theta y := \frac{Lviga \cdot I}{2}$	$\frac{My}{N} = 0.001 $	rad		
		1	2	6 • EC •				
*Rot	ación y momento	último: $\theta u \coloneqq \theta y$	+ at = 0.026 rad	$Mu \coloneqq My + -$	$1.05 \cdot Ec \cdot Ic \cdot$	$0.3 \cdot (\theta u - \theta y)$ n	= 12851.191	∟ kgf•m
*Rot *Crit	ación y momento erios de acentació	residual: $\theta r \coloneqq \theta y$	$+ bt = 0.051 \ rad$	$Mr \coloneqq My \cdot ct$	=2060.776 k	gf∙m		
Cin	erros de deeptaen					10	LS	CP
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
I	O := 0.010	$LS \coloneqq 0.025$	$CP \coloneqq 0.05$					

$A \coloneqq$	$\frac{y \cdot b}{2} = 684.$	$718 \frac{tonnef}{2}$		$B \coloneqq f y \cdot (As + As)$	A's) = 49.8	79 tonnef		
	1	m		JJJ	,	_		
$D \coloneqq -(fy$	$\cdot (A's \cdot d' + A)$	$(As \cdot d)) = -11.22$	23 tonnef • m	$c \coloneqq \frac{-B + \sqrt{B^2}}{2}$	$\frac{A^2 - 4 \cdot A \cdot D}{\cdot A}$) -=9.668 <i>cm</i>	Profundidad neutro	del eje
- Al obtener la	profundidad	del eie neutro, se	verifica que el acer	o superior a comp	resión no ha	cedido:		
$\varepsilon's \coloneqq \frac{\varepsilon y}{\varepsilon}$	$\frac{(c-d')}{l-c} = 0.$.00032 f'	$s \coloneqq Es \bullet \varepsilon' s = 646.4$	$\frac{kgf}{cm^2}$	$\mathbf{if}(arepsilon's <$	$\varepsilon \varepsilon y$, "ok", "no c	cumple") = "o	k"
- Además ver	icamos que e	al concreto tenga i	in comportamiento	elástico				
fclímite	$= 0.70 \cdot f'c =$	$= 147 \frac{kgf}{cm^2}$	Esfuerzo límite de concreto	e comportamiento	elástico del			
$arepsilon c \coloneqq rac{arepsilon y}{(d - arepsilon)}$	$\frac{c}{c} = 0.0006$	57	$\mathbf{if}(arepsilon c < arepsilon c u, "ok$	a", "No cumple"))="ok"			
$fc \coloneqq Ec \cdot$	c = 145.502	$\frac{kgf}{cm^2}$	$\mathbf{if}(fc < fclimite$, "ok", "no cum	ple") = "ok	z "		
Sa dafina la	agultanta da t	tuo ooi 6 n yy oo maaaa						
- se define la fc	$c \cdot b = 21.10$	traccion y compre	$T = A_{a} f_{a}$	- 24 04 topm of		$C_{a} = A'_{a} \cdot f'_{a} = 2$	020 toppof	
Cc≔	== 21.10	1 ionnej	$I \coloneqq AS \cdot Jy \equiv$	= 24.94 <i>connej</i>		$Cs = As \cdot js = 5$		
Dor último o	tanamas la a	umiatura adanta	u al momente eader	ata:				
- For uninto a		$\frac{1}{2}$	y el momento ceder	ne.				
$\phi y := \frac{1}{d}$	—=0.00092 С	<i>m</i>						
$My \coloneqq Cc$	$\frac{2}{\cdot c + Cs}$	$(c-d')+T \cdot (d$	$(-c) = 9103.851 \ k$	af • m				
Ĭ	3		,					
5. DIAGRAMA N	OMENTO -	ROTACIÓN (Us	ando las tablas ASC	E 41-13)				
- Primera colu	mna: fb :=	= 6000 kgf	$\rho b \coloneqq 0.85 \cdot \frac{f'c}{f'}$	$\beta_{1} \cdot \left(\frac{fb}{fb} \right) = 0$	0.021	$\rho := \frac{As}{a} = 0.008$	$5 \rho' \coloneqq \frac{A'}{a}$	s = 0.0
	J •	cm^2	fy	(fb+fy)		$b \cdot d$	b••	d
$\frac{\rho - \rho'}{\rho} = 0$						Entrar en la prin	nera columna	
ho b								
Se usó est	ibos de 3/8" (en dos ramas: dl	$be := \frac{3}{n} = 0.953$	cm $Ae := \frac{\pi}{2}$	$\frac{\cdot \cdot dbe^2}{-} = 0$	$.713 cm^2 A$	$v \coloneqq 2 \cdot Ae = 1$.425 сп
Separació	entre estribe	os: $sen := 10 \ cm$	8		4			
$Vs := \frac{Av}{Vs}$	$\frac{fy \cdot d}{d} = 239$	941.928 kaf	Vactuante ::	$=\frac{2\cdot My}{=4.496}$	tonnef			
	ep			Lviga				
- Segunda col	imna: $\mathbf{if}(s)$	$ep \leq \frac{d}{3}$, "Confo	r.", "No confor.")="Confor."				
	$\mathbf{if} \Big(Vs >$	$\cdot \frac{3}{4} \cdot Vactuante$, "Confor." , "No c	$\operatorname{confor."} = \operatorname{"Con}$	for."	Entrar en la seg	unda columna	
	Vactar	nnte	4 496	,				
- Tercera colu	nna: ———	$\frac{dnuc}{d}$ $xcal:$	=	• 1.1926 =	= 0.975	Entrar en la terc	era columna	
		1						
	$b \cdot d \cdot \gamma$	f'c	$0.30 \cdot 0.40 \cdot \sqrt{21}$	10 • 10				
~~~ C	$b \cdot d \cdot \chi$	/f'c	$0.30 \cdot 0.40 \cdot \sqrt{21}$	10 • 10 b	c	0.010	0.025	0.05
≤0.0 C	$b \cdot d \cdot \chi$	/ <i>f′c</i> ≤3 (0.25)	$0.30 \cdot 0.40 \cdot \sqrt{21}$ a 0.025	<b>b</b> 0.05	с 0.2	0.010	0.025	0.05
≤0.0 C at := 0.02	b•d•∖	f'c $\leq 3 (0.25)$ bt := 0.05	$0.30 \cdot 0.40 \cdot \sqrt{21}$ $a$ $0.025$ $ct \coloneqq 0.2$	10 • 10 b 0.05	с 0.2	0.010	0.025	0.05
≤0.0 C at := 0.02	b•d•γ	f'c $\leq 3 (0.25)$ bt := 0.05	$0.30 \cdot 0.40 \cdot \sqrt{2}$ <i>a</i> 0.025 <i>ct</i> := 0.2 3	10 • 10 b 0.05	c 0.2	0.010	0.025	0.05
≤0.0 C <i>at</i> ≔ 0.02 *Rotación de	b • d • ۲	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$	$0.30 \cdot 0.40 \cdot \sqrt{21}$ $a$ $0.025$ $ct \coloneqq 0.2$ $a$ $ct \approx 0.2$ $m^{4}$	$\frac{b}{0.05}$ $\theta y \coloneqq \frac{Lviga \cdot N}{6 \cdot Ec \cdot I}$	$\frac{c}{0.2}$	0.010 <i>rad</i>	0.025	0.05
≤0.0 C <i>at</i> ≔ 0.02 *Rotación de	b•d•γ	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$	$0.30 \cdot 0.40 \cdot \sqrt{2}$ $a$ $0.025$ $ct \coloneqq 0.2$ $ct^{\frac{3}{2}} = 0.002 \ m^{4}$	$ \frac{b}{0.05} $ $ \theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I} $	$\frac{c}{0.2}$ $\frac{dy}{c} = 0.001$ $05 \cdot Ec \cdot Ic$	0.010 rad $(\theta u - \theta u)$	0.025	0.05
≤0.0 C <i>at</i> := 0.02 *Rotación de *Rotación y r	b•d•γ 5 edencia: omento últim	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $ho: \qquad \theta u := \theta y - \theta$	$0.30 \cdot 0.40 \cdot \sqrt{21}$ $a$ $0.025$ $ct \coloneqq 0.2$ $a^{3}$ $ct \approx 0.022 m^{4}$ $+ at = 0.026 rad$	$ \begin{array}{c} b\\ 0.05\\ \theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}\\ Mu \coloneqq My + \frac{0}{2} \end{array} $	$\frac{c}{0.2}$ $\frac{dy}{c} = 0.001$ $05 \cdot Ec \cdot Ic$	0.010 rad $\cdot 0.3 \cdot (\theta u - \theta y)$	0.025	0.05 kgf • n
≤0.0 C at ≔ 0.02 *Rotación de *Rotación y r	b•d•γ 5 redencia: omento últim	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $no:  \theta u := \theta y - \theta$	$0.30 \cdot 0.40 \cdot \sqrt{2}$ $a$ $0.0025$ $ct \coloneqq 0.2$ $a^{3}$ $ct \approx 0.2$ $m^{4}$ $t = 0.026 \ rad$	$ \frac{b}{0.05} $ $ \theta y \coloneqq \frac{Lviga \cdot N}{6 \cdot Ec \cdot I} $ $ Mu \coloneqq My + \frac{0}{2} $	$\frac{c}{0.2}$ $\frac{Ay}{c} = 0.001$ $05 \cdot Ec \cdot Ic$	$0.010$ $rad$ $\cdot 0.3 \cdot (\theta u - \theta y)$ $m$	0.025	0.05 kgf • n
≤0.0 C at ≔ 0.02 *Rotación de *Rotación y r *Rotación y r	b • d • ۲ 5 edencia: omento últim omento resid	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $ho:  \theta u := \theta y + \frac{1}{2}$ $hual:  \theta r := \theta y + \frac{1}{2}$	$0.30 \cdot 0.40 \cdot \sqrt{2}$ $a$ $0.025$ $ct \coloneqq 0.2$ $\frac{a^{3}}{2} = 0.002 \ m^{4}$ $+ at = 0.026 \ rad$ $+ bt = 0.051 \ rad$	$ \frac{b}{0.05} $ $ \theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I} $ $ Mu \coloneqq My + \frac{0}{2} $ $ Mr \coloneqq My \cdot ct = 0 $	$\frac{c}{0.2}$ $\frac{dy}{c} = 0.001$ $\frac{05 \cdot Ec \cdot Ic}{100}$ $= 1820.77 \text{ k}$	0.010 rad $\cdot 0.3 \cdot (\theta u - \theta y)$ m $cgf \cdot m$	0.025	0.05 kgf • n
≤0.0 C at ≔ 0.02 *Rotación de *Rotación y r *Rotación y r *Rotación y r	b • d • ۲ 5 redencia: omento últim omento resid ceptación:	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $ho:  \theta u := \theta y + \frac{1}{2}$ $hual:  \theta r := \theta y + \frac{1}{2}$	$0.30 \cdot 0.40 \cdot \sqrt{2}$ $a$ $0.0025$ $ct \coloneqq 0.2$ $a$ $ct \coloneqq 0.2$ $m^{4}$ $+ at \equiv 0.026 \ rad$ $+ bt \equiv 0.051 \ rad$	$ \frac{b}{0.05} $ $ \theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I} $ $ Mu \coloneqq My + \frac{0}{2} $ $ Mr \coloneqq My \cdot ct = 0 $	$c$ $0.2$ $\frac{4y}{c} = 0.001$ $05 \cdot Ec \cdot Ic$ $= 1820.77 \ k$	$0.010$ $rad$ $\cdot 0.3 \cdot (\theta u - \theta y)$ $m$ $:gf \cdot m$	0.025	0.05 kgf • n
≤0.0 C at := 0.02 *Rotación de *Rotación y r *Rotación y r *Criterios de	b • d • γ sedencia: omento últim omento resid ceptación:	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $ho:  \theta u := \theta y + \frac{1}{2}$ $hual:  \theta r := \theta y + \frac{1}{2}$	$0.30 \cdot 0.40 \cdot \sqrt{2}$ $a$ $0.025$ $ct \coloneqq 0.2$ $a^{3}$ $ct \approx 0.2$ $m^{4}$ $+ at = 0.026 \ rad$ $+ bt = 0.051 \ rad$	$ \frac{b}{0.05} $ $ \theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I} $ $ Mu \coloneqq My + \frac{0}{2} $ $ Mr \coloneqq My \cdot ct = 0.05 $	$\frac{c}{0.2}$ $\frac{Ay}{c} = 0.001$ $\frac{05 \cdot Ec \cdot Ic}{1820.77 k}$	0.010 rad $\cdot 0.3 \cdot (\theta u - \theta y)$ m $sgf \cdot m$ IO	0.025 -= 10960.842	0.05 kgf • m
≤0.0 C at := 0.02 *Rotación de *Rotación y r *Rotación y r *Criterios de ≤0.0 C	b • d • \ sedencia: omento últim omento resid ceptación:	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $ho:  \theta u := \theta y + \frac{1}{2}$ $ ual:  \theta r := \theta y + \frac{1}{2}$ $\leq 3 (0.25)$	$0.30 \cdot 0.40 \cdot \sqrt{2}$ $a$ $0.025$ $ct \coloneqq 0.2$ $\frac{a^{3}}{2} = 0.002 \ m^{4}$ $+ at \equiv 0.026 \ rad$ $+ bt \equiv 0.051 \ rad$ $0.025$	$10 \cdot 10$ $b$ $0.05$ $\theta y \coloneqq \frac{Lviga \cdot M}{6 \cdot Ec \cdot I}$ $Mu \coloneqq My + \frac{0}{2}$ $Mr \coloneqq My \cdot ct \equiv$ $0.05$	$c$ $0.2$ $\frac{dy}{c} = 0.001$ $05 \cdot Ec \cdot Ic$ $= 1820.77 k$ $0.2$	0.010 rad $\cdot 0.3 \cdot (\theta u - \theta y)$ m $cgf \cdot m$ IO 0.010	0.025 -= 10960.842 <i>LS</i> 0.025	0.05 <b>kgf • m</b> <u>CP</u> 0.05
≤0.0 C at := 0.02 *Rotación de *Rotación y r *Rotación y r *Criterios de ≤0.0 C IO := 0.0	b • d • \ 5 sedencia: omento últim omento resid ceptación: 0	$/f'c$ $\leq 3 (0.25)$ $bt := 0.05$ $Ic := \frac{b \cdot h}{12}$ $ho:  \theta u := \theta y + \frac{1}{2}$ $dual:  \theta r := \theta y + \frac{1}{2}$ $\leq 3 (0.25)$ $LS := 0.025$	$0.30 \cdot 0.40 \cdot \sqrt{22}$ $a$ $0.0025$ $ct := 0.2$ $\frac{a^{3}}{c^{2}} = 0.002 \ m^{4}$ $+ at = 0.026 \ rad$ $+ bt = 0.051 \ rad$ $0.025$ $CP := 0.05$	$10 \cdot 10$ $b$ $0.05$ $\theta y \coloneqq \frac{Lviga \cdot N}{6 \cdot Ec \cdot I}$ $Mu \coloneqq My + \frac{0}{2}$ $Mr \coloneqq My \cdot ct \equiv$ $0.05$	$c$ $0.2$ $\frac{4y}{c} = 0.001$ $05 \cdot Ec \cdot Ic$ $= 1820.77 k$ $0.2$	0.010 rad $\cdot 0.3 \cdot (\theta u - \theta y)$ m $sgf \cdot m$ IO 0.010	0.025 -= 10960.842 LS 0.025	0.05 <b>kgf • m</b> CP 0.05



$$A = \frac{F_{e} \cdot g_{1} \cdot b}{2} = (1.300 \cdot 10^{3}) \frac{formef}{m} \qquad B = fy \cdot (As + As) = 31.923 tormef$$

$$D = -(fy \cdot (A^{a} \cdot d^{2} + As \cdot d)) = -3.192 tormef \cdot m \qquad c = \frac{-B + \sqrt{B^{2} - 4 + A - D}}{2 \cdot A} = 31.91 \text{ cm} \qquad \text{Profindial del eje} = 0.0002$$

$$f = \frac{F_{0} \cdot (C - d)}{d - C} = -0.0002 \qquad f = \frac{F_{0} \cdot E_{0} \cdot c^{2} = -449.573 \frac{kgf}{cn^{3}} \qquad \text{if } [c^{2} \le cy, nck^{n}, no cumple^{n}] = nck^{n}$$

$$-A \text{ dense verificance que el concreto legit un compartamiento elisitor.}$$

$$f = f = 0.70 \cdot f = 1.17 \frac{kgf}{cn^{2}} \qquad \text{Efficients} = -60.0002$$

$$f = 1.17 \frac{kgf}{cn^{2}} \qquad \text{if } [c^{2} \le cu, nck^{n}, no cumple^{n}] = nck^{n}$$

$$f = Ec \cdot cc = 154.946 \frac{kgf}{cn^{2}} \qquad \text{If } [fc < f = f = nc + cc^{2} + ccc^{2} +$$

			$-B - \sqrt{B^2 - 4 \cdot A \cdot D}$			$(\varepsilon c y \cdot (d-c))$	)	
-	Profundidad del eje neut	ro: $c \coloneqq$	2•A	-=3.787 <i>cm</i>	$m \coloneqq min$	$\left( \frac{\varepsilon}{\varepsilon y}, \right)$	c = 3.787	cm
- ,	Al obtener la profundida	d del eje neuti	ro, se verifica que el ace	ro superior a comp	oresión no ha c	edido:		
	$\varepsilon's \coloneqq \frac{\varepsilon y \cdot (c-u)}{d-c} = -$	-0.00023	$f's \coloneqq \varepsilon's \cdot Es = -45$	$4.26 \frac{\textit{kgj}}{\textit{cm}^2}$	$\mathbf{if}(\varepsilon's < \varepsilon)$	$y, \mathrm{``ok''}, \mathrm{``No}$ cu	imple") = '	ʻok"
- :	Luego, se define la result	tante de tracci	ón y compresión:					
	$Cc1 \coloneqq 0.85 \cdot f'c \cdot (c - $	$(-m) \cdot b = 0 t_{0}$	onnef	$Cs \coloneqq A's \cdot$	f's = -1.726 t	tonnef		
	$Cc2 \coloneqq 0.85 \cdot f'c \cdot \frac{m}{2}$	• $b = 20.281$	tonnef	$T \coloneqq As \cdot fy$	y=15.961 <b>tor</b>	nnef		
-	Por último, se obtiene la	curvatura ced	ente y el momento cede	ente:				
	$\phi y \coloneqq \frac{\varepsilon y}{(d-c)} = 0.018$	$\frac{1}{m}$						
	$My \coloneqq Cc1 \cdot \left(d - \frac{(c - c)}{2}\right)$	$\left(\frac{-m}{2}\right) + Cc^2$	$\cdot \left(d-c+\frac{2\cdot m}{3}\right)+Cs$	• $(d-d') = 2613.$	458 <b>kgf ∙ m</b>			
5. DL	AGRAMA MOMENTO	- ROTACIÓN	J (Usando las tablas AS	CE 41-13)				
-	Primera columna: fb	$= 6000 \frac{kgf}{cm^2}$	$\rho b \coloneqq 0.85 \cdot \frac{f'c}{fy}$	$\cdot \beta 1 \cdot \left(\frac{fb}{fb+fy}\right) =$	0.021  ho:	$=\frac{As}{b \cdot d}=0.004$	$\rho' \coloneqq \frac{A}{b}$	$\frac{d's}{d} = 0.0$
	$\frac{\rho - \rho'}{\rho h} = 0$				E	ntrar en la prim	era column	a
				1	$\tau \cdot dbe^2$	2 4	2.4	1 405
	Se usó estribos de 3/8'	' en dos ramas	s: $dbe \coloneqq -\frac{in}{8} = 0.95$	3 <b>cm</b> Ae≔–	${4} = 0.7$	'13 <b>cm</b> ² Av	$= 2 \cdot Ae =$	1.425 <b>ст</b>
	$Vs \coloneqq \frac{Av \cdot fy \cdot d}{sep} = 89$	03. <i>3ep</i> ≔ 10 078.223 <b>kgf</b>	Vactuante	$:= \frac{2 \cdot My}{Lviga} = 1.29$	1 tonnef			
- :	Segunda columna: if	$sep \leq \frac{d}{3}$ , "C	confor.", "No confor."	") = "No confor."	,			
	$\mathbf{if}(Vs)$	$>\frac{3}{4}$ ·Vactua	ante, "Confor.", "No	confor." = "Con	nfor." Ei	ntrar en la segu	nda column	a
	Vactu	4 uante	1.291	)				
- '	Tercera columna: $b \cdot d \cdot$	$\sqrt{f'c}$	$ccal \coloneqq -0.60 \cdot 0.15 \cdot \sqrt{2}$	$\underline{\qquad} \cdot 1.1926$ : 210 • 10	= 0.373 Ei	ntrar en la terce	ra columna	
		V J	a	ь	с			
≤0.0	С	≤3 (0.25)	) 0.025	0.05	0.2	0.010	0.025	0.05
	at := 0.025	bt := 0.05	$ct \coloneqq 0.2$					
*]	Rotación de cedencia:	1	$c \coloneqq \frac{b \cdot h^3}{12} = 0 \ \boldsymbol{m}^4$	$\theta y \coloneqq \frac{Lviga \cdot l}{6 \cdot Fc}$	$\frac{My}{L_{a}} = 0.002 r$	ad		
			12	0.120	$0.05 \cdot Ec \cdot Ic \cdot ($	$0.3 \cdot (\theta u - \theta u)$		
*]	Rotación y momento últi	mo: $\theta u =$	$= \theta y + at = 0.027$ rad	$Mu \coloneqq My + -$	n 100 10 10 10	<u>ı</u>	= 2939.514	kgf∙m
*	Rotación v momento resi	dual: $\theta r :=$	$= \theta u + bt = 0.052$ rad	$Mr := Mu \cdot ct$	= 522.692 <b>ka</b>	f·m		
*(	Criterios de aceptación:		- 3			,		
10.0		12 (0.25)		0.05		IO	LS	CP
≤0.0	C	≤3 (0.25)	) 0.025	0.05	0.2	0.010	0.025	0.05
	IO := 0.010	LS := 0.025	$CP \coloneqq 0.05$					

## ANEXO 03

# PROCEDIMIENTO DEL MODELADO, ANALISIS LINEAL, ANÁLISIS ESTÁTICO NO LINEAL PUSHOVER Y DEL METODO ESPECTRO DE CAPACIDAD, USANDO EL SOFTWARE COMPUTACIONAL DE MODELADO, ANÁLISIS Y DISEÑO DE ESTRUCTURAS SAP2000 v20.0.0

• Definición de las dimensiones en planta y altura de la estructura.

							Grid Lines
iystem Nam	e	GLO	BAL				Quick Start
Grid Data							
Grid ID	Spacing (m)	Line Type	Visible	Bubble Loc	Grid Color 🔺		
1	4.05	Primary	Yes	End		Add	9999999
2	4.05	Primary	Yes	End			ð
3	4.05	Primary	Yes	End		Delete	0
4	4.05	Primary	Yes	End			
5	4.05	Primary	Yes	End			
6	4.05	Primary	Yes	End			
-	٨	n-	M		v		1
Grid Data							Display Grids as
Grid ID	Spacing (m)	Line Type	Visible	Bubble Loc	Grid Color		🔿 Ordinates 💿 Spacin
A	2.28	Primary	Yes	Start		Add	
в	3.85	Primary	Yes	Start			Hide All Grid Lines
С	3.85	Primary	Yes	Start		Delete	Glue to Grid Lines
D	1.58	Primary	Yes	Start			
E	0	Primary	Yes	Start			Bubble Size 0.875
Grid Data							Reset to Default Color
Grid ID	Spacing (I	m) Lin	е Туре	Visible	Bubble Loc		Reorder Ordinates
Z1	3.35	Pi	imary	Yes	End	Add	
Z2	3.20	Pi	imary	Yes	End		
Z3	3.25	Pi	imary	Yes	End	Delete	
Z4	1.95	Pi	imary	Yes	End		
76	0	P	imanı	Yes	End		01

• Definición de las propiedades de los materiales presentes en la edificación: Concreto, Acero de refuerzo, Albañilería. También definimos las áreas de las barras de refuerzo presentes en los elementos estructurales.

General Data		General Data	
Material Name and Display Color	y=4200kg/cm2	Material Name and Display Color fc=210	kg/cm2
Material Type	Rebar 🗸	Material Type Concre	te v
Material Notes	Modify/Show Notes	Material Notes	lodify/Show Notes
Weight and Mass	Units	Weight and Mass	Units
Weight per Unit Volume 7.800E-03	Kgf, cm, C 🗸 🗸	Weight per Unit Volume 2.400E-03	Kgf, cm, C
Mass per Unit Volume 7.954E-06		Mass per Unit Volume 2.447E-06	]
Uniaxial Property Data		Isotropic Property Data	
Modulus of Elasticity, E	2000000	Modulus of Elasticity, E	217370.65119284
Poisson, U	0.3	Poisson, U	0.2
Coefficient of Thermal Expansion, A	1.170E-05	Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	784193.	Shear Modulus, G	90571.1
Other Properties for Rebar Materials		Other Properties for Concrete Materials	
Minimum Yield Stress, Fy	4200	Specified Concrete Compressive Strength, fc	210
Minimum Tensile Stress, Fu	6300	Expected Concrete Compressive Strength	210
Expected Yield Stress, Fye	4620	Lightweight Concrete	
Expected Tensile Stress, Fue	6930	Shear Strength Reduction Factor	

💢 Material Property Data		×					
General Data Material Name and Display Color Material Type Material Notes	Albañileria Other Modify/Show Notes						
Weight and Mass           Weight per Unit Volume           Mass per Unit Volume           1.835E	-03 Units Kgf, cm, C V						
Isotropic Property Data Modulus of Elasticity, E Poisson, U Coefficient of Thermal Expansion, A	17500 0.25 1.170E-05 7000	×	Reinforcing Ba Rebar	ır Sizes			×
Snear modulus, G	1.000		Bar ID 3/8" 3/8" 1/2"	Bar Area 0.71 0.71 1.27	Bar Diameter 0.9525 0.9525 1.27	Add	
			5/8" 3/4" 1"	1.98 2.85 5.07	1.5875 1.905 2.54	Modify Delete Reset to Defaults	
Switch To Advanced Property Display	Cancel			ОК	Cance	el	

• Definición de las secciones – Columnas.

X SD Section Data	🗙 🔀 SAP	2000 - C1-30*	60						
	File	Edit View	Define	Draw Se	elect Display	Options Help			
	- E.B. I		a 🔊						
Section Name C1-30*60									
Section Notes Modify/Show Notes							Sha	e Properties -	Solid
					+	•	Name		Pectanola1
							Mater	; rial	fc=210kg/cm2
Base Material + fc=210kg/cm2 ~	I,				Y Y		Color		
							X Ce	nter	0
Design Type							Y Ce	nter	0
No Check/Design							Heigh	nt	0.6
General Steel Section					- <b>1</b>		Width	1	0.3
							Rotat	ion	Vae
<ul> <li>Concrete Column</li> </ul>							Conc	Model	Mander-Confined(R)
Concrete Column Check/Design	1						Mand	ler Color	
	F						Reinf	orcing Mat.	fy=4200kg/cm2
Reinforcement to be Checked									
<ul> <li>Reinforcement to be Designed</li> </ul>									
Defect F39/Chan Centing									
Deme/Edi/Show Section	ps						-		
Section Designer	Clr								
Section Dropartiae Droparty Modifiare	TNU -							C Model	S Model
Section repetitions Property indunters					-	•	_	ОК	Cancel
Properties Set Modifiers									
Time Dependent Properties				Lesson and the second s	*****				
Display Color	DF 15	hapes Selecte	d						X =0.0
Section Name C2-30*60	i n	ant view ଦେଲା 💋	penne p	Diaw Selec	₽    ■	⇒⊭S			
Section Notes Modify/Show Notes							s	hape Properties	- Solid
	-8								
	- II ^			- 88				ime	Rectangie1
								lor	re=210kg/cm2
Base Material + fc=210kg/cm2 ~	I.							Center	0
	•						Y	Center	0
Design Type							Не	ight	0.6
No Check/Design	<u> </u>						w w	dth	0.3
General Steel Section				- 88			Ro	tation	0
							Re	inforcing	Yes
Concrete Column				- 88	→ + + + + + + + + + + + + + + + + + + +		Co	nc. Model	Mander-Confined(R)
Concrete Column Check/Design					8	····· 8		inder Color	fr=4200kg/am2
	X							arrior carry mat.	iy-4200kg/cm2
Reinforcement to be Checked	-								
Reinforcement to be Designed	all								
Define/Edit/Show Section	[DS]								
Section Designer									
	800							C Model	S Model
Section Properties Property Modifiers						<b>⊢</b>		ОК	Cancel
Properties Set Modifiers	-						84		
Time Dependent Properties Display Color		apes Selected							X =0.02Y =0.2

🔀 SD Section Data >	K XAP2000 - C3-25*30		
	File Edit View Define	Draw Select Display Options Help	
Section Name C3-25*30		⌀⌀⌀⌀∅ Щቅ⊬\$	
Section Notes Modify/Show Notes			Shape Properties - Solid
	T T		Name Rectangle1
	-		Material fc=210kg/cm2
Base Material + fc=210kg/cm2 ~	I.		Color
			X Center 0
Design Type		• • • • •	Heinht 0.25
O No Check/Design			Width 0.3
General Steel Section			Rotation 0
	-		Reinforcing Yes
Concrete Column			Conc. Model Mander-Confined(R)
Concrete Column Check/Desian			Mander Color
Reinforcement to be Checked	8		Reinforcing Mat. fy=4200kg/cm2
	-		
Reinforcement to be Designed	<b>IIIIIIIIIIIII</b>		
Define/Edit/Show Section			
Schild Laboration Scalar	<u>ps</u>		
Section Designer	ch		
Occilian Descention Descents Medifican	NI		C Model S Model
Section Properties Property Modifiers			OK Cancel
Properties Set Modifiers	-		
Time Dependent Properties	-+4		
Display Color	1 Shapes Selected		X =0.04Y =0.11 Kof.m.1

• Definición de las secciones – Vigas.

Rectangular Section			X X Reinforcement Data	Х
Section Name Section Notes	V-30°65_(P1,3,5,7_AB_1,2) Modify/Show Notes	Display Color	Rebar Material       Longitudinal Bars       +       fy=4200kg/cm2       Confinement Bars       +       fy=4200kg/cm2	
Dimensions Depth (13 ) Width (12 ) Material	65. 30. Property Modifiers Set Modifiers	Secton	Design Type         O Column (P-M2-M3 Design)         Image: Beam (M3 Design Only)         Concrete Cover to Longitudinal Rebar Center         Top       5         Bottom       5         Reinforcement Overrides for Ductle Beams         Left       Right         Top       9.90         Bottom       5.94	
re-zrokyronz	Set mounters		X M Rainfarrament Data	
Section Name Section Notes	V-30'45_(P1,3,5,7_BC_1,2) Modify/Show Notes	Display Color	Rebar Material       Longitudinal Bars       +       fy=4200kg/cm2       Confinement Bars (Ties)       +       fy=4200kg/cm2	
Dimensions		Section	Design Type	
Depth (t3) Width (t2)	45 30	2	Column (P-M2-M3 Design) Beam (M3 Design Only)	
		3	Concrete Cover to Longitudinal Rebar Center Top 5	
			Bottom 5 Reinforcement Overrides for Ductile Beams	
		Properties	Left Right	
Material	Property Modifiers	Section Properties	10µ 2.5 2.34	
				_

💢 Rectangular Section		Х	💢 Reinforcement Data 🛛 🗙
Section Name V-30*45_(P1,3,5,7_CD) Section Notes Modify/Shov Dimensions	1.2) Display Color		Rebar Material Longitudinal Bars + fy=4200kg/cm2  Confinement Bars (Ties) + fy=4200kg/cm2  Design Type
Depth (13) 45. Width (12) 30.	Properties		Column (P-M2-M3 Design)  Concrete Cover to Longitudinal Rebar Center  Top  Bottom  Reinforcement Overrides for Ductile Beams  Left Right  Top  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5.94  5
Material Property Modifie	Time Dependent Depending		
Rectangular Section		X	Reinforcement Data
Section Name V-30*45_(P1,3,5,7_AB	_3) Display Color		Rebar Material
Section Notes Modify/Sho	v Notes		Confinement Bars (Ties) + fy=4200kg/cm2 v
Dimensions	Section		Design Type
Depth (13) 45			Column (P-M2-M3 Design)
			Concrete Cover to Longitudinal Rebar Center Top 5. Bottom 5. Reinforcement Overrides for Ductile Beams Left Right
	Section Properties		Top 9.90 9.90
+ fc=210kg/cm2 v Set Modile	fiers Time Dependent Properties		Bottom 5.94 5.94
Kectangular Section		Х	Keinforcement Data
			Rebar Material
Section Name V-30*45_(P1,3,5,7_BC_	3) Display Color		Longitudinal Bars + fy=4200kg/cm2 V
Section Notes Modify/Shov	v Notes		Confinement Bars (Ties) + fy=4200kg/cm2 v
Depth (t3) 45.			Column (R.M2-M3 Design)
Width (12) 30.			<ul> <li>Beam (M3 Design Only)</li> </ul>
	Properties		Concrete Cover to Longitudinal Rebar Center Top 5. Bottom 5. Reinforcement Overrides for Ductile Beams Left Right
Material Property Modifie	Section Properties		Top 9.9 17.82
+ fc=210kg/cm2 V Set Modi	fiers Time Dependent Properties		Bottom 5.94 5.94

• Definición de las secciones - Muros de albañilería:

Los muros de albañilería se representarán por medio de puntales diagonales según la Norma Técnica E-070 (Albañilería).

Donde:

L= Longitud del muro de albañilería

h= Altura del muro de albañilería

 $D = \sqrt{L^2 + h^2}$  Longitud del puntal

t= Espesor efectivo del puntal

b= D/4=Ancho equivalente del puntal

PUNTAL_(P1,3,5,7_BC_1)				
PUNTAL_(P1,3,5,7_CD_1)				
L=	3.275 m			
h=	2.900 m			
D=	4.374 m			
t=	0.250 m			
b=	1.094 m			

PUNT	PUNTAL_(P1,3,5,7_BC_2)		
PUNT	AL_(P1,3,5,7_CD_2)		
L=	3.275 m		
h=	2.750 m		
D=	4.276 m		
t=	0.250 m		
b=	1.069 m		

PUNT	PUNTAL_(P1,3,5,7_BC_3)		
PUNTAL_(P1,3,5,7_CD_3)			
L=	3.275 m		
h=	3.646 m		
D=	4.901 m		
t=	0.250 m		
b=	1.225 m		



Section Name	PUNTAL_(P1,3,5,7_BC_3)	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Depth (t3)	1.225	2
Width (t2)	0.25	
		3
		Properties

• Definición de las secciones – Losa aligerada.

Section Name	ALIG20_1DX		Display Color
Section Notes	Modify	Show	
Гуре		Thickness	
🔿 Shell - Thin		Membrane	0.125
O Shell - Thick		Bending	0.125
O Plate - Thin		Material	
O Plate Thick		Material Name	+ fc=210kg/cm2
Membrane		Material Angle	0.
O Shell - Layered/Non	linear	Time Dependent Propertie	:S
Modify/Sho	ow Layer Definition	Col Time D	

• Procedemos a dibujar las columnas y vigas.



• Asignamos restricciones en la base de las columnas.



• Procedemos a ubicar las columnas y vigas como indican los planos.



• Procedemos a dibujar la losa aligerada.



• Definimos los diafragmas rígidos (DIAPH1, DIAPH2) y semi - rígidos (DIAPH3).

💢 Diaphragm Constraint 🛛 🗙	🔀 Diaphragm Constraint 🛛 🗙	💢 Diaphragm Constraint 🛛 🗙 🗙
Constraint Name DIAPH1	Constraint Name DIAPH2	Constraint Name DIAPH3
Coordinate System GLOBAL V	Coordinate System GLOBAL V	Coordinate System GLOBAL ~
Constraint Axis	Constraint Axis	Constraint Axis
🔿 X Axis 🔿 Auto	🔿 X Axis 🔿 Auto	🔿 X Axis 🔿 Auto
🔿 Y Axis	O Y Axis	🔿 Y Axis
Z Axis	Z Axis     Z	Z Axis
Semi-rigid Diaphragm Option	Semi-rigid Diaphragm Option	Semi-rigid Diaphragm Option
Semi-rigid	Semi-rigid	Semi-rigid
Note: Defined for application of seismic and wind loads. Option is only active when the Coordinate System is Global and the Constraint Axis is Z Axis.	Note: Defined for application of seismic and wind loads. Option is only active when the Coordinate System is Global and the Constraint Axis is Z Axis.	Note: Defined for application of seismic and wind loads. Option is only active when the Coordinate System is Global and the Constraint Axis is Z Axis.
Assign a different diaphragm constraint to each different selected Z level	Assign a different diaphragm constraint to each different selected Z level	Assign a different diaphragm constraint to each different selected Z level
OK Cancel	OK Cancel	OK Cancel

• Asignamos los diafragmas a cada piso.



¥ 542000 voldo Utimate 64-bit- MODELO TESS FINAL       - O X         File Edit View Define Draw Select Action Action Tests Final       N N O Gol ♣ S Stor Z · O Y         N M O Col ▲ P O Y       I i i i i i i i i i i i i i i i i i i i	
File       Sett       Anign       Analyze       Display       Degin       Options       Tools       Help         Image: Sett	
Image: Solution of the second sec	
K Y2Place 8 /c0         Frame         Frame         Frame         Frame         Frame         X           A         B         Cable         ///         Property Modifiers         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         //         ///         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //<	
A     B     Cable     Image: Cable       I     Image: Cable     Image: Cable       Image: Cable     Image: Cable     Image: Cable	
Image: Control of the second secon	
Image: Constraint of the second se	
Solid / Local Ares.	
N Internet A internet	
Reverse Connectivity	
ki kont Lada > 🚺 find Length Offset.	
13 m francLods , To Interior Point.	
Cable Loads , Output Stations.	
Tenden Leasts	Х
Area Loads . Contract Load Length	
Solicitade · Pan.	
Link/Support Loads	
kit Riters st Hings	
Asign to Group. Cit-I State-6 & Hingo Demittes.	
Auto User Defined Length Offset at End-1 Auto	
your re occurrent registry occurrent and the Mass.	
Cier Display of Assgrs Rigid Zone Factor 0.7	
Copy Assigns 1/2 Antenetic Farme Mark.	
Reset Form to Default Values	
al V Los Tande Options	

• Asignamos brazos rígidos a los elementos viga y columna

• Procedemos a dibujar los puntales.

Consideramos dibujar los puntales en ambos sentidos para considerar la entrada de la fuerza sísmica de izquierda a derecha o viceversa, también se escogerá la opción PINNED, debido a que la albañilería trabaja a fuerzas axiales de compresión y no transmite momentos.



• Desconectamos los puntales entre sí, debido a que solo uno trabajará de acuerdo a la dirección de entrada del sismo



• Le damos las condiciones a los puntales que representan a los muros de albañilería para que estos trabajen solo a compresión y no a tensión



• Definimos los patrones de carga al cual está sometido la estructura.

oad Patterns					Click To:
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Add New Load Pattern
pp	Dead ~	1		$\sim$	Modify Load Pattern
PP SCP CV	Dead Super Dead Reducible Live	1 0 0			Modify Lateral Load Pattern
CVT	Roof Live	0			Delete Load Pattern
				•	Show Load Pattern Notes
					OK

• Procedemos a realizar el metrado de cargas

#### METRADO DE CARGAS - LOSAS

- Sobrecarga permanente (SCP) Peso de acabados entrepiso = 120 kg/m2Peso de tabiquería entrepiso = 60 kg/m2Peso de acabados techo = 50 kg/m2
- Carga viva entrepiso (CV) S/C aulas =  $250 \text{ kg/m}^2$ S/C corredor = 400 kg/m2

Nivel	Sobrecarga permanente (SCP) (P. acabados + P. tabiquería)
1	180 kg/m2
2	180 kg/m2
3	50 kg/m2

Niuol	Carga viva (CV)	Carga viva (CV)
INIVEI	Aulas	corredor
1	250	400
2	250	400

- Carga viva de techo (CVT) = $50 \text{ kg/m2}$	Nivel	Carga viva de techo
	3	50 kg/m2

#### METRADO DE CARGAS - VIGAS

- Sobrecarga permanente (SCP)

#### Alfeizar alto

Nivel	Espesor	Altura de	Peso específico	Carga repartida
111701	de muro	muro	Albañilería	Curgu reputtidu
2	0.15 m	2.00 m	1,800 kg/m3	540 kg/m
3	0.15 m	2.00 m	1,800 kg/m3	540 kg/m

#### Alfeizar bajo

Niual	Espesor	Altura de	Peso específico	Cargo roportido
INIVEI	de muro	muro	Albañilería	Carga repartida
2	0.15 m	1.35 m	1,800 kg/m3	364.5 kg/m
3	0.15 m	1.35 m	1,800 kg/m3	364.5 kg/m

Parapeto

Nivel	Espesor	Altura de	Peso específico	Carga repartida
INIVCI	de muro	muro	Albañilería	Carga repartida
2	0.15 m	1.10 m	1,800 kg/m3	297 kg/m
3	0.15 m	1.10 m	1,800 kg/m3	297 kg/m

#### Viga BC de los Pórticos 1,3,5,7

Nivel	Espesor	Altura de muro		Peso específico	Carga r	epartida
INIVEI	de muro	Altura inicial	Altura final	Albañilería	Inicial	Final
2	0.25 m	2.75 m	2.75 m	1,800 kg/m3	1,237.5 kg/m	1,237.5 kg/m
3	0.25 m	3.646 m	4.688 m	1,800 kg/m3	1,640.7 kg/m	2,109.6 kg/m

Viga CD de los Pórticos 1,3,5,7

Nivel	Espesor	Altura de muro		Peso específico	Carga r	epartida
INIVEI	de muro	Altura inicial	Altura final	Albañilería	Inicial	Final
2	0.25 m	2.75 m	2.75 m	1,800 kg/m3	1,237.5 kg/m	1,237.5 kg/m
3	0.25 m	4.688 m	3.646 m	1,800 kg/m3	2,109.6 kg/m	1,640.7 kg/m

• Asignamos cargas en losas.

- Sobrecarga permanente (SCP)



- Carga viva (CV)





- Carga viva de techo (CVT)

	X Assign Area Uniform Loads to Frames X
	General
	Load Pattern VVT v
	Coordinate System GLOBAL ·
	Load Direction Gravity
	Load Distribution One Way v
	Uniform Load
	Load 50 kgf/m ²
	Options
÷	Add to Existing Loads
	Replace Existing Loads
Estimate and the second	O Delete Existing Loads
	Reset Form to Default Values
	()

- Cargas repartidas en vigas



• Definimos el peso sísmico.

La NTE-030 indica que para este tipo estructuras (categoría A), el peso se calculará adicionando a la sobrecarga permanente (SCP) el 50% de la carga viva de entrepisos y el 25% de la carga viva de los techos.

Nass Source Data		-	
New Course New	DECO SIGNICI	2	
Mass Source Nar	ne PESO SISMICI	5	
Mass Source			
Element Self N	lass and Additional Mass		
Specified Loa	d Patterns		
_			
Mass Multipliers for	Load Patterns		
Load Patt	ern Multiplier		
SCP	√ 1.		
SCP	1		
CV	0.5		Add
CV CVT	0.5 0.25		Add
CV CVT	0.5 0.25		Add Modify
CV CVT	0.5 0.25		Add Modify Delete
CV CVT	0.5		Add Modify Delete

- Se procede a realizar el análisis elástico y lineal (Estático y dinámico), para revisar las derivas que exige la norma E-030 y obtener las fuerzas cortantes que se usarán en el análisis estático no lineal pushover.
  - Análisis estático

Se definen los patrones de carga para representar el sismo estático en ambas direcciones (SX_ESTÁTICO, SY_ESTÁTICO)



La fuerza cortante en la base originada por el sismo, se determina con la siguiente ecuación

$$V = \frac{2005}{R} x P$$

Dirección XX  $Vx = \frac{0.35x1.5x2.5x1.15}{8}xP$  Vx = 0.189xP

Dirección XX  

$$Vy = \frac{0.35x1.5x2.5x1.15}{3}xP$$

$$Vy = 0.503xP$$

💢 User Defined Seismic Load Pattern	>	K Vser Defined Seismic Load Pattern	×
Load Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override	Other Factors Base Shear Coefficient, C 0.189 Building Height exp., K 1.	Load Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override	Other Factors Base Shear Coefficient, C 0.503 Building Height exp., K 1.
Lateral Load Elevation Range     Program Calculated     User Specified     Max Z     Min Z	OK	Lateral Load Elevation Range  Program Calculated User Specified Max. Z Min. Z	OK

- Análisis dinámico modal espectral

ANÁLISIS DINÁMICO

Definimos los espectros de respuesta de diseño para ambas direcciones (SISMO DE DISEÑO XX, SISMO DE DISEÑO YY), para ello se usa la siguiente ecuación:



Definimos los casos de carga que representan los sismos en ambas direcciones (SX_DISEÑO, SY_DISEÑO)

🔀 Load Case Data - Response Spectrum	X	X Load Case Data - Response Spectrum	×
Load Case Name         Notes           Sx, DISERIC         Set Def Name         Modfly/Show           Modal Combination         @         OCC         GMC ft         1.           O SRSS         GMC ft         0.         0.         0.           O Absolute         GMC ft         0.         0.         0.	Load Case Type Response Spectrum v Design Directional Combination © SRSS C coc3 Absolute	Load Case Name         Notes           SY_DSERIO         Set Def Name         ModifyShow           Modal Combination <ul></ul>	Lod Case Type           Design           Drectonal Combination           @ SRSS           O COC3           Ø Assolute
OBUC Periodic + Rigid Type SRSS ✓     ONRC 10 Percent     Double Sum Modal Load Case Use Modes from this Modal Load Case Use Modes from this Modal Load Case     @ Standard - Acceleration Loading     Advanced - Displacement hertia Loading	Scale Factor Mass Source Previous (PESO SISMICO) Disphragm Eccentricity Eccentricity Ratio 0.05 Override Eccentricities Override	O GMC Periodic + Rgid Type SRSS     O NRC 10 Percent     O Double Sum Nodal Load Case Use Modes from this Modal Load Case Use Modes from this Modal Load Case     MODAL     ✓     @ Standard - Acceleration Loading     O Advanced - Displacement Inertia Loading	Scale Factor Mass Source Previous (FESO SISMICO) Diephragm Eccentricity Eccentricity Ratio Override Eccentricities Override
Loads Appled Load Name Function Scale Factor Accel U1 SISMODE DI 9 8 1 Accel U3 SISMODE DI 9 8 1	OK	Load Appled     Load Name     Function     Scale Factor       Accel     U2     V     SSN0 DE IDV     9.81       Accel     U2     PISMO DE DISE     9.81     Add       Modify     Debte     Debte     Debte       Other Parameters     Other Parameters     Modify/Show	OK Cancel

### ANALISIS MODAL

Definimos el caso modal y seleccionamos los grados de libertad a analizar en el modelo.

💢 Load Case Data - Modal	Х	X Analysis Options	Х
Load Case Name       Notes         INODAL       Set Def Name       Modify/Show         Stiffness to Use <ul> <li>Zero Initial Conditions - Unstressed State</li> <li>Stiffness at End of Noninear Case</li> <li>Important Note:</li> <li>Loads from the Nonlinear Case are NOT included in the current case</li> <li>Maximum Number of Modes</li> <li>Minimum Number of Modes</li> <li>Loads Applied</li> <li>Show Advanced Load Parameters</li> <li>Other Parameters</li> <li>Frequency Shift (Center)</li> <li>Cutoff Frequency (Radus)</li> <li>Convergence Tolerance</li> <li>1.00E-09</li> </ul>	Load Case Type Modal V Design Type of Modes Eigen Vectors Ritz Vectors Mass Source PESO SISMICO OK Cancel	Available DOFs         UX       UY       UZ       RX       RY       RZ         Fast DOFs       Space Frame       Plane Grid       Space Truss       Cancel         Space Truss       Image: Cancel       XZ Plane       XY Plane       Solver Options         Tabular File       Automatically save XML, Excel or Microsoft Access tabular file after analysis       File name       Database Tables Named Set       Group	
Allow Automatic Frequency Shifting			

- Verificamos los desplazamientos y derivas de la estructura para las dos direcciones de análisis (SX_DISEÑO, SY_DISEÑO).
  - Dirección XX



- Dirección YY



El modelado y análisis realizado hasta el momento forma parte del análisis lineal.

• Para comenzar a realizar el análisis estático no lineal pushover, es necesario tener el modelado de la estructura y su respectivo análisis lineal.

Los patrones de acciones laterales para el análisis estático no lineal pushover se pueden establecer a base de sistema de cargas laterales o sistemas de desplazamientos.

Para el presente trabajo se usarán ambos patrones de acciones laterales.

el sistema de cargas laterales se obtendrá de las fuerzas cortantes por piso originados por los sismos de diseño en cada dirección y el sistema de desplazamientos utilizados será los desplazamientos de los modos fundamentales en cada dirección.

Obtención del sistema de cargas laterales.
 Cortantes producidos por el sismo SX_DISEÑO, en cada nivel de la estructura



X Section Cut Stresses & Forces
X         Y           Start Point         -188.689         709.85           End Point         2583.0965         709.85
Resultant Force Location and Angle           X         Y         Z         Angle (X to 1)           1197_2038         709.85         0.         0.           Include         If Frames         Shells         Include         Include         Include
Integrated Forces Right Side Left Side
1 2 Z 1 2 Z Force 42216 7 38 3259 0 6976 42216 7 38 3259 0 6976
Moment 32200.92 34596859. 8681046. 32200.92 34596859. 8681046.
Save Cut Save Cut
Close Refresh

- Cortantes producidos por el sismo SY_DISEÑO, en cada nivel de la estructura



X s	ection Cut Stresses & Forces X
	X         Y           Start Point         116.4094         703.9761           End Point         1212.1478         703.9761
	Resultant Force Location and Angle           X         Y         Z         Angle (X to 1)           664.2786         703.9761         0.         0.           Include         IZ         Frames         IZ         Angle (X to 1)
	Integrated Forces         Right Skde         Left Side           1         2         Z         1         2         Z           Force         355.8415         121137.59         3807.5448         355.8415         121137.59         3807.5448
	Moment 99953306. 2167123.6 82032648. 99953306. 2167123.6 82032648. Save Cut Save Cut

- Valores del sistema de cargas laterales XX

Nivel	Fuerza cortante (V)	fuerza horizontal (F)	Factor	Fuerza lateral
3	42216.700	42216.700	1.517	1517.233
2	94277.300	52060.600	1.871	1871.015
1	122102.090	27824.790	1.000	1000.000

- Valores del sistema de cargas laterales YY

Niual	Fuerza	Fuerza	Factor Fue	Fuerza
INIVEI	cortante (V)	horizontal (F)	Factor	lateral
3	121137.590	121137.590	1.738	1738.447
2	263293.400	142155.810	2.040	2040.080
1	332974.900	69681.500	1.000	1000.000

• Definición y asignación del sistema de cargas laterales en las dos direcciones X, Y



Las cargas laterales se asignarán al centro de masas de cada nivel

(A) (B	) (	C)	(D) (E)		>	User Seismic Loa	ad Pattern						
(I) (I	) (	T)	(i) $(i)$		E	dit							
T T		T	ΤŤ			User Seismic Loa	ads on Diaphragr	ns					
Define Load Patterns						Diaphragm	Diaphragm Z	FX	FY	MZ	х	Y	^
						DIAPH3	10.317	1517.233	0.	0.			
Load Patterns					Clic	DIAPH2	6.55	1871.015	0.	0.			
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern			DIAPH1	3.35	1000.	0.	0.			-111
LATERAL_X	Quake	~ 0	User Loads	$\sim$									
PP SCP CV CVT LATERAL X	Dead Super Dead Reducible Live Roof Live Quake		User Loads										
LATERAL_Y	Quake	0	User Loads	۲									
		/L											
	) (	i) T			_	Edit User Seismic Lo	ads on Diaphrag	ms					
Define Load Patterns						Diaphragm	Diaphragm Z	FX	FY	MZ	x	Y	^
						DIAPH3	10.317	0.	1738.447	0.			
Load Patterns		Colf Weight	Auto Lateral		Click	DIAPH2	6.55	0.	2040.08	0.			
Load Pattern Name	Туре	Multiplier	Load Pattern	_		DIAPH1	3.35	0.	1000.	0.			
LAIERAL_Y	Quake	~ 0	User Loads	~									
PP SCP CV CVT LATERAL_X	Dead Super Dead Reducible Live Roof Live Quake	1 0 0 0	User Loads										
	$\bigvee$			-		User Sp	ecified Applicatio	n Point	ditional Fcc. Bat	o (all Diaph )	0		

- Definición de los casos de carga no lineal
  - Carga gravitacional no lineal (CGNL)

oad Case Name	Case Name Notes		Notes	Load Case Type				
CGNL		Set Def Name	Modify/Show	Static	✓ Design			
nitial Conditions				Analysis Type				
Zero Initial Cond	ditions - Start from U	Instressed State		C Linear				
O Continue from S	tate at End of Nonlin	iear Case		Nonlinear				
Important Note:	Loads from this	previous case are included	in the current case	O Nonlinear Staged C	onstruction			
Iodal Load Case				Geometric Nonlinearity P	arameters			
All Modal Loads A	pplied Use Modes fr	om Case	MODAL $\sim$	None				
ando Applied				O P-Delta				
L oad Type	Load	Name Scale Fac	tor	P-Delta plus Large E	Displacements			
Load Pattern	✓ CVT	V 0.25		Mass Source				
Load Pattern	PP	1	Add	PESO SISMICO	~			
Load Pattern	SCP	1						
Load Pattern	CVT	0.25	Modify					
			Delete					
L								
Other Parameters								
Other Parameters		Full Load	Modify/Show		ок			
Other Parameters	Fin	Full Load	Modify/Show		DK			

- Análisis Estático no lineal pushover

Para este análisis se consideró tres tipos de carga para cada dirección de análisis: PUSH, PUSH_NEG, PUSH_MODO. Los resultados de estos serán comparados.
El caso PUSH, usa el sistema de cargas laterales hallados anteriormente como patrón de acciones laterales cuando el sismo ingresa de derecha a izquierda, el caso PUSH_NEG, usa el sistema de cargas laterales hallados anteriormente como patrón de acciones laterales cuando el sismo ingresa de izquierda a derecha.

El caso PUSH_MODO, usa el sistema de desplazamientos de los modos fundamentales como patrón de acciones laterales

PUSH_X Very land Care Data - Nomines' Static Very in the Data + Nomines' Static Very inter Controls - Start from Unstressed State Very inter Control - State	Dirección X	Х				
Led Case Norm Weis a Control Control Formation Case Case Norm Weis Control Control Formation Case Case Norm Case Case Case Norm Case Cas	PUSH_X	ad Case Data - Nonlinear	Static			×
Initial Conditions       State The Universe State         Controls the State Conditions       State The Universe State         Dec Andreas on State End of Notifications       State State State         Dec Andreas on State End of Notifications       State State State         Dec Andreas on State State       State State State         De Conditions       State State State         De Conditions       State State State         De Conditions       State State State         De Condition State State State		ad Case Name JSH_X	Set Def Na	Notes ame Modify/Show	Load Case Type Static V Design	
Image: Source State Control Contence Contencent Control Control Control Control Control		al Conditions  Zero Initial Conditions - St Continue from State at Encomportant Note: Loads	art from Unstressed State I of Nonlinear Case from this previous case ar	CGNL ~	Analysis Type O Linear O Nonlinear	
Load Yee Load Hame Scale Factor Load Agence Load Hame Scale Factor Load Application Full LOAD Results Saved Load Application Fault Edd Nonineer Parameters Load Application Fault Edd Nonineer Parameters Load Case Data - Nonineer State Load Case Data - Nonineer State Data Conditions - State from Undersed State Load State Into Instresed State Nonineer State Control Nonineer	Mo A Loz	dal Load Case All Modal Loads Applied Use ads Applied	Modes from Case	MODAL	Koninear Staged Construction      Geometric Nonlinearity Parameters      None      P-Deta      P-Deta      P-Deta plus Large Displacements	
Under Parameters       OK         Load Application       Finil State Only         Notifiers? Parameters       Default         Modely/Show       Modely/Show         (Load Case Data - Nonlinear State       Employed State         (Load Case Data - Nonlinear State       Modely/Show         (Load Case Data - Nonlinear State       Notes         (Load Case Data - Nonlinear State       Notes         (Load Case Data - Nonlinear State       Notes         (Load Case Type       State Control for Nonlinear State Analysis         (Load Case Type       Code of Nonlinear Case         Octower form State Edu of Nonlinear Case       ORL         Control form State Edu of Nonlinear Case       ORL         Control form State Edu of Nonlinear Case       ORL         Control form State Edu of Nonlinear State Control       Nonlinear State Control         Nonlinear State St		Load Type .oad Pattern V LATE .oad Pattern LATE	Load Name RAL_X ~ RAL_X	1 Add Modify	Mass Source PESO SISMICO	-
Lead Case Data - Nonlinear Static       X         Lead Case Name       Notes         PUSK_X       Set Def Name         Initial Conditions       Modify/Show         O Zero Initial Conditions - Start from Unstressed State       CGNL         © Continue from State at End of Nonlinear Case       CGNL         Initial Conditions - Start from Unstressed State       CGNL         © Continue from State at End of Nonlinear Case       CGNL         Integration from this previous case are included in the current case       Nonnear         Otacid Case       MODAL         None       Ose Conjugate Displacement         Costo Applied       None         Load Type       Load Name         Case Pattern       Load Type         Load Stree       Modify/Show         Load Stree       Poleta         Other Parameters       Modify/Show         Load Application       Ful Load         Modify/Show       OK         Cancel       Modify/Show	Ott La R	er Parameters bad Application esults Saved onlinear Parameters	Full Load Final State Only Default	Modify/Show Modify/Show Modify/Show	OK	
RUSH_X       Set Def Name       Modify/Show       Static       Design         Initial Conditions               Analysis Type	Load Case Data - Nonlinear Si	tatic	Notes	Load Case Type	X	tic Analysis
Initial Conditions   O Zero Initial Conditions - Start from Unstressed State <ul> <li>Contrue from State at End of Noninear Case</li> <li>Control Cose</li> <li>Al Modal Loads Applied Use Modes from Case</li> <li>MODAL</li> </ul> <ul> <li>Control Cose</li> <li>Al Modal Loads Applied Use Modes from Case</li> <li>MODAL</li> <li>Noni</li> <li>P-Deta</li> <li>None</li> <li>P-Deta</li> <li>P-D</li></ul>	PUSH_X	Set Def Name	Modify/Show	Static v Design		
Ozero Intial Conditions - Start from Unstressed State <ul> <li>Continue from State at End of Noninear Case</li> <li>Important Note:</li> <li>Loads from this previous case are included in the current case</li> </ul> Notal Load Case   Al Modal Loads Appled   Load Speled   Load Type   Load Name   Scale Factor   Load Pattern   Load Pattern   LatERAL_X   Imodify/Show   Other Parameters   Load Application   Ful Load   Modify/Show   Other Parameters   Load Application   Ful Load   Modify/Show   Other Parameters   Load Application   Ful Load   Modify/Show     OK   Cancel	Initial Conditions			Analysis Type	Load Application Control	
<ul> <li>Continue from State at End of Nonlinear Case</li> <li>Important Note:</li> <li>Loads from this previous case are included in the current case</li> <li>Nonlinear Staged Construction</li> <li>Control Displacement</li> <li>O Use Conjugate Displacement</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u u ut Joint 53</li> <li>O O O Ut u</li></ul>	Zero Initial Conditions - Start	t from Unstressed State		O Linear	O Full Load	
Important Note: Loads from this previous case are included in the current case   Indeal Load Case   All Modal Loads Applied   Load Speled   Load Name   Scale Factor   Load Pattern   LatERAL_X   Image State Only   Modify/Show   Other Parameters   Load Application   Full Load   Modify/Show   None   None   Other Parameters   Load Application   Full Load   Modify/Show   Nonthered Displacements   None   None   None   Other Parameters   Load Application   Full Load   Default   Nonthy State Only   Notify/Show   Other parameters   Load Application   Full Load   Default   Notify/Show   Other parameters   Load Application   Full Load <t< td=""><td>Continue from State at End o</td><td>f Nonlinear Case</td><td>CGNL V</td><td>Nonlinear</td><td>Displacement Control</td><td></td></t<>	Continue from State at End o	f Nonlinear Case	CGNL V	Nonlinear	Displacement Control	
Add Loads Case       MODAL       Geometric Noninearty Parameters       O Use Conjugate Displacement         Load Applied       None       Image: Displacement       O Use Montored Displacement         Load Type       Load Name       Scale Factor       Poteta       O None         Load Pattern       LATERAL_X       1       Add         Modify       Dekte       Poteta       O DF       U1       at Joint 53         Other Parameters       Dekte       OK       Cancel       Modify/Show         Notestance December       Default       Modify/Show       OK       Cancel	Important Note: Loads fro	om this previous case are included	I in the current case	O Nonlinear Staged Construction	Control Displacement	
Load Name Scale Factor Load Pattern LATERAL X 1 Load Application Full Load Modify/Show Dher Parameters Load Application Full Load Modify/Show Defaut Modify/Show Defaut Modify/Show	Nodal Load Case All Modal Loads Applied Use M	odes from Case	MODAL ~	Geometric Nonlinearity Parameters	Use Conjugate Displacement Use Monitored Displacement	
Load Type Load Name Scale Factor Load Pattern LATERAL X 1 Load Pattern LATERAL X 1 Load Pattern LATERAL X 1 Load Pattern LATERAL X 1 Load Pattern LATERAL X 1 Modify Delete Delete Delet	oads Applied			P-Detta	Load to a Monitored Displacement Magnitude	of 0.47
Load Pattern V LATERAL_X 1 Load Pattern LATERAL_X 1 Load Pattern LATERAL_X 1 Modify Delete PSO SISMCO V Modify Delete OK Cancel OK Cancel Modify/Show	Load Type	Load Name Scale Fa	ctor	P-Delta plus Large Displacements		
Modify     Delete     Additional Controlled Displacements       Dther Parameters     None     Modify/Show       Load Application     Full Load     Modify/Show       OK     OK     OK       Results Saved     Final State Only     Modify/Show       Default     Modify/Show     Cancel	Load Pattern V LATERA	L_X ∨ 1 L_X 1	Add	Mass Source PESO SISMICO	Monitored Displacement     DOF U1      Generalized Displacement	at Joint 53
Other Parameters     OK     Modify/Show     Modify/Show       Load Application     Fuil Load     Modify/Show     OK       Results Saved     Final State Only     Modify/Show     Cancel			Modify Delete		Additional Controlled Displacements	
Other Parameters Load Application Full Load Modify/Show OK OK Cancel OK Cancel					None	Modify/Show
Load Application Full Load Modify/Show Results Saved Final State Only Modify/Show Nesheere Desemblane Default Modify/Show	Other Parameters					
Results Saved Final State Only Modify/Show Cancel	Load Application	Full Load	Modify/Show	ОК	ОК	Cancel
Normalizary December Default Medify/Chau	Results Saved	Final State Only	Modify/Show	Cancal		
	Nonlinger Decemptore	Default	Modify/Show	Cancel		

#### PUSH_X_NEG

💢 Load Case Data -	- Nonlinear Static		×
Load Case Name		Notes	Load Case Type
PUSH_X_NEG	Set Def Nam	Modify/Show	Static V Design
Initial Conditions			Analysis Type
Zero Initial Co	nditions - Start from Unstressed State		O Linear
Continue from	State at End of Nonlinear Case	CGNL $\vee$	Nonlinear
Important Note:	Loads from this previous case are	included in the current case	O Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads	Applied Use Modes from Case	MODAL $\sim$	O None
Loads Applied			P-Delta
Load Type	Load Name S	Scale Factor	P-Delta plus Large Displacements
Load Pattern	✓ LATERAL_X ✓ -	-1.	Mass Source
Load Pattern	LATERAL_X -	-1. Add	PESO SISMICO V
		Modify	
		Dalata	
		Delete	
Other Parameters			
Load Application	Displ Control	Modify/Show	ОК
Results Saved	Multiple States	Modify/Show	Cancel
Naciona Decem	Defeut		
Dad Case Data - Nonlinear Static	ters Detault	Modify/Show	×
ad Case Data - Nonlinear Static d Case Name ISH_X_NEG Set Def N	ame Notes	Modify/Show Load Case Type Static V Design	X Load Application Control for Nonlinear Static Analysis
And Case Data - Nonlinear Static ad Case Name USH_X_NEG Set Def N al Conditions	Iame Notes	Load Case Type Static V Design Analysis Type	X X Load Application Control for Nonlinear Static Analysis
Ad Case Data - Nonlinear Static ad Case Name USH_X_NEG Set Def N ial Conditions ) Zero Initial Conditions - Start from Unstressed State	ame Notes Modify/Show	Load Case Type Static V Design Analysis Type O Linear	X Load Application Control for Nonlinear Static Analysis Load Application Control O Full and
ad Case Data - Nonlinear Static d Case Name ISH_X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case	ame Notes Modify/Show	Load Case Type Static V Design Analysis Type O Linear (i) Nonlinear	X Load Application Control for Nonlinear Static Analysis Load Application Control O Full Load D Publication Control
ad Case Data - Nonlinear Static d Case Name ISH_X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed States Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a	ame Notes Modify/Show	Modify/Show Load Case Type Static   Design Analysis Type Uinear Nonlinear Nonlinear Nonlinear Staged Construction	X Load Application Control for Nonlinear Static Analysis Load Application Control O Ful Load O Displacement Control
ad Case Data - Nonlinear Static d Case Name ISH_X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a tial Load Case	e CGNL v included in the current case	Modify/Show Load Case Type Static   Design Analysis Type Linear Nonlinear Nonlinear Nonlinear Staged Construction Geometric Nonlinearty Parameters	X Load Application Control for Nonlinear Static Analysis Load Application Control O Ful Load O Displacement Control Control Displacement
Ad Case Data - Nonlinear Static d Case Name SH_X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case nportant Note: Loads from this previous case a tal Load Case II Modal Loads Applied Use Modes from Case	ame Notes Modify/Show CONL  v re included in the current case MODAL  v	Modify/Show Load Case Type Static Analysis Type Linear Nonlinear Nonlinear Nonlinear Nonlinear Nonlinearity Parameters None	X Load Application Control for Nonlinear Static Analysis Load Application Control O Ful Load Displacement Control Control Displacement Use Conjugate Displacement
Additional Parame ad Case Data - Nonlinear Static d Case Name SH_X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a fal Load Case II Modal Loads Applied Use Modes from Case dis Annied	ame Notes Modify/Show CGNL  V re included in the current case MODAL  V	Modify/Show       Load Case Type       Static     V       Design       Analysis Type       O     Linear <ul> <li>Noninear Staged Construction</li> <li>Geometric Noninearity Parameters</li> <li>None</li> <li>P-Deta</li> </ul>	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load Displacement Control Control Displacement Use Conjugate Displacement Use Montored Displacement
Add Case Data - Nonlinear Static ad Case Name USH_X_NEG Set Def N al Conditions 2 Zero Initial Conditions - Start from Unstressed Statk 1 Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a dal Load Case UI Modal Loads Applied Use Modes from Case kds Applied Load Type Load Name	ame Notes Iame Modify/Show CGNL	Modify/Show       Load Case Type       Static     V       Design       Analysis Type       O     Linear <ul> <li>Nonlinear</li> <li>Nonlinear Staged Construction</li> <li>Geometric Nonlinearity Parameters</li> <li>None</li> <li>Pro-Eta</li> <li>P-Deta plus Large Displacements</li> </ul>	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load  Displacement Control Control Displacement Use Conjugate Displacement Use Monitored Displacement Load to a Monitored Displacement Load to a Monitored Displacement
Add Case Data - Nonlinear Static ad Case Name SM_X_NEG Set Def N al Conditions 2 Zero Initial Conditions - Start from Unstressed Stati Continue from State at End of Nonlinear Case modant Note: Loads from this previous case a dal Load Case All Modal Loads Applied Use Modes from Case Idd Applied Load Type Load Name coad Pattern V LATERALX V	ame Notes Iame Modify/Show  CGNL   re included in the current case MODAL  Scale Factor  I.	Modify/Show       Load Case Type       Static     V       Design       Analysis Type       O     Linear <ul> <li>Nonlinear</li> <li>Nonlinear</li> <li>None</li> <li>P-Deta</li> <li>P-Deta plus Large Displacements</li> <li>Mass Source</li> </ul> <li>Mass Source</li>	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load  Displacement Control Control Displacement Use Conjugate Displacement Use Conjugate Displacement Use do a Monitored Displacement Load to a Monitored Displacement Magnitude of 0.47
Additional Parame ad Case Data - Nonlinear Static d Case Name SH_X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case proortant Note: Loads from this previous case a bal Load Case United Load Set State Load Type Load Name coad Pattern LATERAL_X Coad Pattern LATERAL_X	Iame Notes Iame Modify/Show  CGNL  CGNL CGNL CGNL CGNL CGNL CGNL CGNL CGNL	Modify/Show       Load Case Type       Static     V       Design       Analysis Type       O     Linear <ul> <li>Nonlinear</li> <li>Nonlinear</li> <li>State Construction</li> <li>Geometric Nonlinearity Parameters</li> <li>None</li> <li>P-Deta</li> <li>P-Deta plus Large Displacements</li> <li>Mass Source</li> <li>PESO SISMICO</li> <li>None</li> </ul>	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load Displacement Control Control Displacement Use Conjugate Displacement Use Conjugate Displacement Load to a Monitored Displacement Analysis
Ad Case Data - Nonlinear Static  d Case Name SKL_NEG SKL_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case poportant Note: Loads from this previous case a dia Load Case II Modal Loads Appled Use Modes from Case dds Appled Load Type Load Name coad Pattern LATERAL_X Coad Pattern LATERAL_X	Iame Notes Iame Modify/Show  e CGNL  vre included in the current case MODAL  Scale Factor  ( 1.  Add	Modify/Show       Load Case Type       Static     V       Design       Analysis Type       O Linear <ul> <li>Nonlinear</li> <li>Nonlinear Staged Construction</li> <li>Geometric Noninearity Parameters</li> <li>None</li> <li>P-Deta</li> <li>P-Deta plus Large Displacements</li> <li>Mass Source</li> <li>PESO SISMICO</li> <li></li> </ul> <li>Mass Source</li>	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load      Displacement Control Control Displacement     Use Conjugate Displacement     Use Monitored Displacement     Load to a Monitored Displacement     Load to a Monitored Displacement     Dop Us Dop U1     at Joint 53
Ad Case Data - Nonlinear Static ad Case Name SRI_X_NEG Set Def N al Conditions - Start from Unstressed State 10 Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a dal Load Case All Modal Loads Appled Use Modes from Case add Appled Case Load Type Load Name Load Pattern LATERAL_X C	Iame Notes Iame Modify/Show  CGNL  re included in the current case  MODAL  Scale Factor  L  Add Modify	Modify/Show Load Case Type Static   Design Analysis Type C Linear Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters None P-Deta plus Large Displacements Mass Source PESO SISMICO	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load O Explacement Control Control Displacement Use Conjugate Displacement Use Monitored Displacement Use Monitored Displacement Evaluation of 0.47 Monitored Displacement © DOF U1
Add Case Data - Nonlinear Static ad Case Name USH X_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a dai Load Case NI Modal Loads Appled Load Type Load Name Load Name LATERAL_X LATERAL_X	Iame Notes Iame Modify/Show   CONL  re included in the current case  MODAL  Scale Factor  1.  Add Modify Delete	Modify/Show Load Case Type Static   Design Analysis Type  Linear  Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters None P-Detta plus Large Displacements Mass Source PESO SISMICO	X Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load  Displacement Control Control Displacement Use Kontored Displacement Use Kontored Displacement Use Kontored Displacement Dop Ful Addinaul Castroled Displacement
ad Case Data - Nonlinear Static  d Case Name SRLX_NEG Set Def N al Conditions Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case a fail.Load Case did Applied Load Type Load Name case Pattern LATERAL_X LATERAL_X	Iame Notes Iame Modify/Show  P CONL CONL CONL CONL CONL CONL CONL CONL	Modify/Show Load Case Type Static   Control	Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load Eval Load Displacement Control Control Displacement Use Conjugate Displacement Use Kontored Displacement Load to a Monitored Displacement Load to a Monitored Displacement Generalized Displacement Additional Controled Displacement Additional Controled Displacement
Ad Case Data - Nonlinear Static ad Case Name JSH_X_NEG Set Def N al Conditions ) Zero Initial Conditions - Start from Unstressed State 1 Continue from State at End of Nonlinear Case mportant Note: Loads from this previous case at dal Load Case Al Modal Loads Appled Use Modes from Case add Appled Load Type Load Name Load Pattern V LATERAL_X V LOTERAL_X	Iame Notes Iame Modify/Show  e CGNL  re included in the current case MODAL Scale Factor ( 1.	Modify/Show         Load Case Type         Static       V         Design         Analysis Type         O       Linear <ul> <li>Nonlinear</li> <li>Nonlinear Staged Construction</li> <li>Geometric Nonlinearity Parameters</li> <li>None</li> <li>P-Deta plus Large Displacements</li> <li>Mass Source</li> <li>PESO SISMICO</li> <li></li> </ul> <li>Mass Source</li>	Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load Ful Load Isplacement Control Control Displacement Use Kontored Displacement Use Kontored Displacement Load to a Monitored Displacement Wontored Displacement Iso Dor U1 at Joint 53 Generalized Displacement Additional Controled Displacement None Modify/Show
	Iame Notes Iame Modify/Show  CONL  re included in the current case  MODAL  Scale Factor  1.  Add Modify Delete  Modify/Show	Modify/Show         Load Case Type         Static <ul> <li>Design</li> <li>Analysis Type</li> <li>Innear</li> <li>Noninear Staged Construction</li> </ul> Geometric Noninearity Parameters <ul> <li>None</li> <li>P-Deta</li> <li>P-Deta plus Large Displacements</li> </ul> Mass Source <ul> <li>PESO SISMCO</li> <li>OK</li> </ul>	Load Application Control for Nonlinear Static Analysis   Load Application Control   Full Load   Full Load   Displacement Control   Control Displacement   Use Kontored Displacement   Load to a Montored Displacement   Load to a Montored Displacement   E DOF   U1   Centralized Displacement   DOF   U1   Additonal Controled Displacement   None
Additional Part and     Additin Part and     Additional Part and     Additional Part and     Addi	Iters     Default       Iame     Notes       Iame     Modify/Show       P     CONL       CONL        Scale Factor        1     Add       Modify/Show        Delete	Modify/Show Load Case Type Static   Design Analysis Type Linear Noninear Staged Construction Geometric Noninearity Parameters None P-Deta P-Deta plus Large Displacements Mass Source PESO SISMICO  OK Pesot	K Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load Displacement Control Control Displacement U Use Conjugate Displacement U Use Monitored Displacement Load to a Monitored Displacement Both Control Displacement Generalized Displacement Additional Controled Displacement None Modify/Show OK Cancel

### PUSH_X_MODO1

.oad Case Name		Notes	Load Case Type
PUSH_X_MOD01	Set Def Name	Modify/Show	Static V Design
Initial Conditions			Analysis Type
O Zero Initial Conditions - Start from Un	stressed State		O Linear
Continue from State at End of Nonline	ar Case	$_{\rm CGNL}$ $\sim$	Nonlinear
Important Note: Loads from this pr	evious case are included	in the current case	O Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied Use Modes from	n Case	MODAL $\sim$	O None
Londo Applied			P-Delta
Load Type Load N	ame Scale Fac	tor	O P-Delta plus Large Displacements
Mode v 1	1		Mass Source
Mode 1	1	Add	PESO SISMICO V
		Add	
		Modify	
		Delete	
		Dente	
Other Parameters			
Load Application Fi	II Load	Modify/Show	ОК
Results Saved Final	State Only	Modify/Show	Cancel
	) o fault		

💢 Load Case Data - Nonlinear Static		X
	Load Case Type Static Vestion Design Analysis Type Linear Nonlinear Staged Construction Geometric Nonlinearity Parameters None Poteta P.Deta Jus Large Displacements Mass Source PESO SSMCO V	
Other Parameters Load Application Full Load Results Saved Final State Only Modify/Show Nonlinear Parameters Default Modify/Show	OK Cancel	Additional Controlled Displacements None Modify/Show OK Cancel

# ✓ Dirección YY

PUSH_Y
--------

PVSH_V       Set Def Name       Modify/Show         Initial Conditions - Staft from Unstreased State       COML       Analysis Type         Important Note:       Leads from this previous case are included in the current case       O Moniteer 2         Model Leads Applied       Leads from this previous case are included in the current case       O Moniteer 2         Leads Applied       Leads from this previous case are included in the current case       O Moniteer 2         Cast Applied       Lead Name       Scale Factor       O Hone         Lead Application       Fail Lead       Modify/Show       Name         Caster Derivations       Parameters       Default       Modify/Show         Caster Derivations       State Castor       Name       State Castor         Caster Derivations       State Castor       Name       State Castor         Caster Derivations       Fail Lead       Modify/Show       Name       State Castor         Caster Derivations       State Castor       Name       State Castor       State Castor         Caster Derivations       State Castor       Nadify/Show       Nadify/Show       National State Castor       State Castor         Caster Derivations       State Castor       Nadify/Show       National Castor Derivational State Chandy State Castor		Load Case Name		Notes	Load Case Type
Initial Conditions - Start from Unstressed State         Opcontext from State at End of Noninear Case         Important Note:       Loads from this previous case are included in the current case         Modal Load Case       MODAL         Important Note:       Loads from this previous case are included in the current case         Modal Load Case       MODAL         Important Note:       Loads from Case         Important Note:       Load Name         Scale Applied       Important Note:         Important Note:       Load Name         Important Note:       Load Name         Important Note:       Load Name         Important Note:       Load Name         Important Note:       Probata		PUSH_Y	Set Def Name	Modify/Show	Static V Design
Zere intel Continue from State if End of Nonineer Case         (ONL             (Continue from State if End of Nonineer Case             (ONL             (Continue from State if End of Nonineer Case             (Onder State		Initial Conditions			Analysis Type
Continue from State at End of Nonlinear Case     Important Nor:     Loads from the previous case are included in the current case     Modal Load Applied Use Modes from Case     Modal     Load Stream     Load Type     Load Name     Scale Factor     Modal Woda Load Applied Use Modes from Case     Modal     Modal Case Applied     Load Stream     Load Type     Load Name     Scale Factor     Modal     Modal V     Model Case     Applied     Modal V     Model Case     Applied     Modal     Modal Case     Applied     Modal     Moda		<ul> <li>Zero Initial Conditions - Star</li> </ul>	t from Unstressed State		O Linear
I used store the local case are included in the current case I data Load Case A lideal Load Case A lideal Load Case A lideal Load Case A lideal Load Case I Load Applied I Load Type Load Applied I Load Hame Scale Factor I Load Applied I Load Case Tool I Load Case I Load Case Tool I Load I Inter Case I		Continue from State at End of	of Nonlinear Case	CGNL 🗸	Nonlinear
Wedd Load Case       MODAL       Ore         At Modal Loads Applied Use Modes from Case       MODAL       Probas         Loads Apple       Load Type       Load tame       Scale Factor         Load State       ATERALY       1       Add         Ised Sector       ATERALY       1       Add         Other Parameters       Ised Source       PESD SISMCO       Ises Source         ESD SisM Colling       Final State Only       Modify/Show       OK         Conclose       Final State Only       Modify/Show       OK         Conclose       Sector Final State Only       Modify/Show       OK         Conclose       Noninear Parameters       Default       Modify/Show       OK         Conclose       Noninear Parameters       Default       Modify/Show       OK         Conclose       Noninear State Conty       Noninear State Conty       OK       OK         Conclose       Noninear State Conty       Isso       OK       OK       OK       OK         Conclose       Noninear State Conty       Isso       OK       OK <td></td> <td>Important Note: Loads fro</td> <td>om this previous case are inclu</td> <td>uded in the current case</td> <td>Nonlinear Staged Construction</td>		Important Note: Loads fro	om this previous case are inclu	uded in the current case	Nonlinear Staged Construction
Al Modal Laads Appled Use Modes from Case       MODAL         Lodd S Appled       Lodd Name         Scad Pattern       Ladd Name         Load Pattern       LATERAL_Y         Load Pattern       LATERAL_Y         Load Appleation       Full Load         Other Parameters       OK         Load Appleation       Full Load         Modify/Show       OK         Case Data       Default         Modify/Show       OK         Case Data       Default         Modify/Show       OK         Case Name       Default         Case Data       Default         Modify/Show       OK         Case Name       Default         Case Data       Modify/Show         Case Data       Modify/Show         Case Data       Modify/Show         Case Data       Modify/Show         Case Data       Notifieer State         Case Data       Notifieer State      <		Modal Load Case			Geometric Nonlinearity Parameters
Load Appled Load Type Load Name Scale Factor Load Fattern LATERALY I Add Modify Delete Coted Fattern LATERALY I Add Modify Delete Coted Seatern Coted Seatern Coted Seatern Coted Seatern Coted Application Full Load Modify/Show Results Saved Final State Only Modify/Show Cancel Notices Fattern Coted Application Coted Application Coted Coted Application Coted Coted Application Coted Coted Application Coted Coted Application Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted Coted C		All Modal Loads Applied Use M	odes from Case	MODAL $\sim$	O None
Load Type Load Name Scale Factor Load Pattern LATERAL Y I Lad Fahren LATERAL Y I Lad Fahren LATERAL Y I Lad Fahren LATERAL Y I Lad Source Press Static O Modify Delete Control Application Full Load Modify/Show Cancel Control Application Control for Nonlinear Static Analysis Hy Conditions - Stati foru Unstressed State Of Humer Modify/Show Cancel Nonlinear Static Control Patients I control for Nonlinear Static Analysis Hy Conditions - Stati foru Unstressed State Of Humer Modify/Show Control Static Control Of Humer Static C		Loads Applied			P-Delta
Load Pattern       LATERAL_Y       1         Load Pattern       LATERAL_Y       1         Add       Modify         Delete       PESO SISMICO         Other Parameters       Load Application         Load Application       Full Load         Results Saved       Final State Only         Modify/Show       OK         Cancel       OK         Cancel       Modify/Show         Cancel       Noninear State Control         Conditions       State Control Control         Cancel       Noninear State Control         Control Control       Parameters         Load Application Control       Ontear         Control Control Control       Pal Load         Cancel		Load Type	Load Name Scale	e Factor	P-Delta plus Large Displacements
FESD SISMICO Ofter Parameters Load Application Full Load Full Load Information State Control For State Control Control for Nonlinear Static Analysis For State at ford Nonlinear State Carditions Families Load Information Case Nonlinear For State at ford Nonlinear State of Nonlinear State Control Conditions For State at ford Nonlinear State Carditions C		Load Pattern V LATERA	ι∟Y ∨ 1		Mass Source
Understand       Modify/Show         Other Parameters       Load Application         Load Application       Full Load         Results Saved       Final State Only         Modify/Show       OK         Case Data       Modify/Show         IC dee Data       Modify/Show         IC de Case       Modify/Show         IC dee dee Internet       Modify/Show		Load Pattern LATERA	λL_Υ 1	Add	PESO SISMICO V
Image: State Control       Full Load         Index Parameters       Default         Load Application       Full Load         Results Saved       Final State Only         Modify/Show       Cancel         Index Parameters       Default         Modify/Show       Kadapplication Control for Nonlinear Static Analysis         Conditions       State Control         Nonlinear State at End of Nonlinear Case       ColkI         Nonlinear State at End of Nonlinear Case <th></th> <th></th> <th></th> <th></th> <th></th>					
Understand       Delete         Other Parameters       Load Application         Fuel Load       Modify/Show         Results Saved       Final State Only         Modify/Show       Cancel         Vonineer Parameters       Default         Modify/Show       Cancel         Case Data - Nonlineer State       X         Case Data - Nonlineer State       X         Case Data - Nonlineer State Control       State Control         Case Data - Nonlineer State End of Ionineer Case       Nonlineer State End of Ionineer Case         Case Data - Nonlineer State End of Ionineer Case       Nonlineer Staged Construction         Case Type       Load Application Control       Ful Load         Case Ione       Nonlineer Staged Construction       Control Deplacement         Case Ione       Nonlineer Staged Construction       Control Deplacement         Case Ione       Nonlineer Staged Construction       Out Use Conjugate Displacement         Case Ione       None       Pocha pus Large Displacement       Out Ione         Case Ione       None       None       Out Ione       Secord         Case Ione       None       None       Secord       Out Ione       Out Ione         Secord       Pocha pus Large Displacement <td< td=""><td></td><td></td><td></td><td>Modify</td><td></td></td<>				Modify	
Leaster Other Parameters Load Application Results Saved Final State Only Nonlinear Parameters Default Modify/Show Cancel Cancel OK Cancel OK Cancel OK Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cancel Cance				Delete	
Under Parameters       Load Application       Full Load       Modify/Show         Results Saved       Final State Only       Modify/Show       Cancel         Nonlinear Parameters       Default       Modify/Show       Cancel         Case Dats - Nonlinear Static       Image: Case Case Type       Image: Case Case Type       Image: Case Case Type         Case Dats - Nonlinear Static       Image: Case Case Type       Image: Case Case Type       Image: Case Case Type         Case Case Type       Image: Case Case Type       Image: Case Case Type       Image: Case Case Type       Image: Case Case Type         Case Case Type       Image: Case Case Type         Case Case Type       Image: Case Case Type				Delete	
Udter Parameters       OK         Load Application       Final State Only         Modify/Show       Cancel         Nontinear Parameters       Default         Modify/Show       Cancel         IC see Data - Nonlinear Static       Image: Static Only         Case Data - Nonlinear Static       Image: Static Only         Case Data - Nonlinear Static       Image: Static Only         Conditions       Image: Static Only         Conditions       Static Only         Conditions       Of Nonlinear State Control         Conditions       Conditions - Stat from Unstressed State         Conditions       Onlinear State End of Nonlinear Case         Conditions - Stat from Unstressed State       Condumer State End of Nonlinear Case         Conditions - State from Case       Nonlinear State Control         I Lead Case       Nonlinear State Control         Control Loads from this previous case are included in the current Case       Control Control Displacement         Case Joint Notic       Load State Factor       Nonlinear State Control         Applied       Load None       Source       P. Deta pub Lung Displacements         Matter Displacement       @ Displacement       @ Displacement         @ Dor       U2       et Jent 53         <					
Load Application     Full Load     Modify/Show     OK       Results Saved     Final State Only     Modify/Show     Cancel		Other Parameters			
Results Saved Nonlinear Parameters       Final State Only Default       Modify/Show       Cancel         IC cee Data - Nonlinear Static       IC       Modify/Show       K       Load Application Control for Nonlinear Static Analysis         IC cee Data - Nonlinear Static       IC       State       IC       IC       Cancel         IC cee Data - Nonlinear Static       IC       IC       State       IC       IC<		Load Application	Full Load	Modify/Show	ок
Nonlinear Parameters       Default       Modify/Show         L Case Data - Nonlinear Static       Image: Static analysis         L'Y       Set Def Nume       Load Case Type         Load Case       Nonlinear Static analysis         Case Name       Load Case Type         Default       Load Case Type         Static       Uses         In Konlinear Static       Image: Static analysis         Load Case Type       Static         In Konlinear Case       CONL         Inter Note:       Load State End of Nonlinear Case         Case       Nonlinear Staged Construction         Case Type       Nonlinear Staged Construction         Case Type       Nonlinear Staged Construction         Ordet       Pota         O None       None         Load State from Case       MODAL         Appled       Load Name         Load State Factor       Mass Source         OK       Cancel		Results Saved	Final State Only	Modify/Show	Carran
Nonlinear Parameters     Default     Modify/Show       ICase Data - Nonlinear Static     Case Type       Load Case Type     Static       Conditions     Stat from Unstressed State       Conditions     Case Inne       Conditions - Start from Unstressed State     CONL       Onlinear form State at End of Nonlinear Case     CONL       Conditions     Case       Note Incard     Nonlinear Staged Construction       Generatic Nonlinear Staged Construction     Generatic Nonlinear Stage Construction       Case Incord Case     Nonlinear Stage Construction       Case Incord Case Incord Case Incord Insplacement     Use Conjugate Displacement       Incord Case Incord Case Incord Case Incord Insplacement     Incord Displacement       Cad Type Load Name Scale Factor     Nonlinear Stage Construction       Gatern LatERAL_Y     1       Add     Modify/Show       Mapplication     Ful Load       Mapplication     Modify/Show       OK     Cancel		Results Saved	- indicidity citily	woony/show	Cancel
I Case Data - Nonlinear Static         Case Name         Ly         Set Def Name         Modify/Show         Static         Conditions         Conditions - Start from Unstressed State         Onlinear form State at End of Nonlinear Case         Conditions         Case Applied         Load Case         Obsolutions State at End of Nonlinear Case         Conductions Control         Control Displacement         O Nonlinear Staged Construction         Geometric Nonlinearly Parameters         O Nonlinear Staged Construction         Geometric Nonlinearly Parameters         O Nonlinear Staged Construction         Geometric Nonlinearly Parameters         O Nonlinear         O Nonlinear Staged Construction         Geometric Nonlinearly Parameters         O Nonlinear Staged Construction         Generatized Displacement         Load Name       Scale Factor         Mattern       Nacional Displacement         Load Name       Scale Factor         Mattern       Nonlinear         Mattern       Lattern         Valence       Nonlinear         Mattern       Lattern         Mattern       <		Nonlinear Parameters	Detault	Modify/Show	
Conditions	Case Name	Set Def Name	Notes Modify/Show	Load Case Type Static V Desi	X Load Application Control for Nonlinear Static Analysis
Conditions         Zero Initial Conditions - Start from Unstressed State         Continue from State at End of Nonlinear Case         Original Note:         Loads from this previous case are included in the current case         Nonlinear Staged Construction         Geometric Nonlinear/ Parameters         Nonlinear Staged Construction         Geometric Nonlineary Parameters         Nonlinear Staged Construction         Geometric Nonlineary Parameters         Nonlinear Staged Construction         Geometric Nonlineary Parameters         Nonlinear Staged Construction         Battern       Latteral_Y         Indidity/Show         Parameters         Application       Full Load         Modify/Show         OK         OK         Cancel					Load Application Control
Zero Infail Conditions - Start from Unstressed State       CGNL       Image: Control Control Control Displacement Control         Contract Note:       Loads from this previous case are included in the current case       Nonlinear Staged Construction       © Displacement Control         Load Case       NODAL       Non       Control Displacement       © Use Conjugate Displacement         Nodal Loads Appled       Load Name       Scale Factor       Non       Pote a pus Large Displacements         Mass Source       P: Deta pus Large Displacement       © Do Full Load to al Montored Displacement       Iso at to al Montored Displacement         Istreameters       Modify/Show       None       Modify/Show       OK         Parameters       OK       OK       Cancel	Conditions			Analysis Type	
Contrue from State at End of Nonlinear Case       CGNL <ul> <li>Nonlinear from State at End of Nonlinear Case</li> <li>Contrue from State at End of Nonlinear Case</li> <li>Nonlinear Staged Construction</li> <li>Nonlinear Staged Construction</li> <li>Second to Nonlinear Displacement</li> <li>Use Conjugate Displacement</li> <li>Use Montered Displacement</li> <li>Use Montered Displacement</li> <li>Use Montered Displacement</li> <li>Delete</li> <li>Parameters</li> <li>OK</li> <li>OK</li> <li>Concel</li> </ul>					Eull and
ortant Note: Loads from this previous case are included in the current case Loads from this previous case are included in the current case Loads Appled Load Name Scale Factor Ad Pattern VLATERAL_Y 1 I Add Modify Delete Parameters Application Full Load Modify/Show Ka Syved Final State Only Modify/Show	Zero Initial Con	nditions - Start from Unstressed State		🔘 Linear	O FullLoad
Load Case Modal Loads Applied Use Modes from Case MODAL Applied Load Type Load Name Scale Factor d Pattern V LATERAL_V 1 d Pattern LATERAL_V 1 Add Modify Delete Parameters Application Ful Load Modify/Show Parameters Application Ful Load Modify/Show Modify/Show OK Cancel	Zero Initial Con Continue from S	ditions - Start from Unstressed State State at End of Nonlinear Case	CGNL v	<ul><li>Linear</li><li>Nonlinear</li></ul>	Full Load     Jisplacement Control
Laad Loads Applied Use Modes from Case       MODAL <ul> <li>Generatized Displacement</li> <li>P.Deta</li> <li>P.Deta plus Large Displacements</li> <li>Mondity</li> <li>Pelete</li> </ul> <ul> <li>Parameters</li> <li>Modify/Show</li> <li>Model Loads</li> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> </ul> <ul> <li>Modify/Show</li> </ul> <ul> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> <li>Modify/Show</li> </ul> <ul> <li>Modify/Show</li> <li>Modify/Show</li></ul>	Zero Initial Con Continue from S Portant Note:	ddtions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu	CGNL ~	Linear     Nonlinear     Nonlinear Staged Construction	Full Load     Displacement Control     Control Displacement
Appled Load Yope Load Name Scale Factor id Pattern VLATERAL Y 1 Id Pattern LATERAL Y 1 Id P	Zero Initial Con Continue from S Fortant Note:	ddions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu	CGNL V	Linear     Nonlinear     Nonlinear Staged Construction	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement
Appled       Coad Name       Scale Factor       Image: Control of Control of Displacement Magnitude of Control of Displacement Magnit displacement Magnit displacement Magnitud	Zero Initial Con Continue from S ortant Note: Load Case	iditions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu-	CGNL ~	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     Nonea	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Kontored Displacement
Load Type Load Name Scale Factor d Pattern LATERAL_Y 1 d Pattern LATERAL_Y 1 Add Modify Delete Parameters Application Ful Load Modify/Show Application Ful Load Modify/Show Modify/Show OK Cancel	Zero Initial Con continue from S ortant Note: Load Case Modal Loads A	ddions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu- Applied Use Modes from Case	GGNL v ded in the current case MODAL v	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     None     P.Deta	Ful Load     Displacement Control Control Displacement     Use Conjugate Displacement     Use Monitored Displacement
d Pattern V LATERAL_Y 1 d Pattern LATERAL_Y 1 d Pattern LATERAL_Y 1 Modify Delete Parameters Application Full Load Modify/Show OK OK Cancel Mass Source PESO SSMICO Modify Delete OK Cancel OK Cancel	Zero Initial Con continue from S ortant Note: Load Case Modal Loads A copplied	ddions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu upplied Use Modes from Case	CGNL v ded in the current case	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     Poteta     Poteta     Poteta	Ful Load     Displacement Control Control Displacement     Use Conjugate Displacement     Use Monitored Displacement Load to a Monitored Displacement Magnitude of     0.47
d Patern     LATERAL_Y     1     Add       Modify     Delete     PESO SISMICO     Concel       Parameters     OK     OK       Application     Fuil Load     Modify/Show       Ka Saved     Final State Only     Modify/Show	Zero Initial Con continue from S ortant Note: Load Case Modal Loads A Applied Load Type	ditions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu upplied Use Modes from Case Load Name Scale	CGNL V ded in the current case	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     P.Peta     P.Deta     P.Deta plus Large Displacements	Ful Load     Explacement Control     Control Displacement     Use Conjugate Displacement     Use Monitored Displacement     Load to a Monitored Displacement Magnitude of     0.47 Monitored Displacement
Parameters Additional Controlled Displacements None Modify/Show None Modify/Show OK Cancel	Zero Initial Con ontinue from S ortant Note: Load Case Modal Loads A Applied Load Type id Pattern	Addons - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu Applied Use Modes from Case Load Name Scale Load Name Scale Load Name 1	CGNL  v ded in the current case MODAL  v Factor	Linear     Noninear     Noninear Staged Construction     Geometric Nonlinearity Parameters     None     P-Deta     P-Deta     P-Deta plus Large Displacements     Mass Source	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Konitored Displacement     Load to a Monitored Displacement     Monitored Displacement     Monitored Displacement     O DOE     U2     un     at logs     53
Parameters Application Full Load Modify/Show OK OK Cancel	Zero Initial Con continue from S ortant Note: Load Case Modal Loads A coad Type Id Pattern Id Pattern	Jdions - Start from Unstressed State       State at End of Nonlinear Case       Loads from this previous case are inclu       upplied Use Modes from Case       Load Name       Scale       V       LATERAL_Y       I       LATERAL_Y       1	CGNL v ded in the current case MODAL v Factor Add	Linear     Nonlinear     Nonlinear Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     P-Deta     P-Deta     P-Deta     Pass Source     PESO SISMICO	Ful Load     Displacement Control Control Displacement     Use Conjugate Displacement     Use Monitored Displacement Load to a Monitored Displacement Monitored Displacement     O DOF U2 v at Joint 53
Parameters Application Full Load Modify/Show OK OK Cancel	Zero Initial Con Continue from S Cortant Note: I Load Case Modal Loads A S Applied Load Type ad Pattern Id Pattern	Addons - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu upplied Use Modes from Case Load Name Load Name Category LATERAL_Y 1 LATERAL_Y 1	CGNL v ded in the current case MODAL v Factor Add	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     P-Deta     P-Deta plus Large Displacements     Mass Source     PESO SISMICO	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Monitored Displacement     Load to a Monitored Displacement     Monitored Displacement     O DOF     U2     at Joint     53     Generalized Displacement
Parameters Parameters Application Full.Coad Modify/Show OK OK Cancel	Zero Initial Con Continue from S ortant Note: I Load Case Modal Loads A Modal Loads A Appled Load Type dd Pattern id Pattern	Addons - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu Applied Use Modes from Case Load Name Load Name Scale LATERAL_Y I LATERAL_Y I I	CGNL  V  ded in the current case  MODAL V  Factor Add Modify	Linear     Nonlinear     Nonlinear Staged Construction Geometric Nonlinearity Parameters     None     P.Peta     P.Peta     P.Peta plus Large Displacements Mass Source     PESO SISMICO	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Monitored Displacement Load to a Monitored Displacement     Monitored Displacement     O DOF     U2     at Joint     S3     Generalized Displacement
Parameters JAppication Full Load Modify/Show OK Cancel	Zero Initial Con continue from S ortant Note: I Load Case Modal Loads A s Applied Load Type ad Pattern ad Pattern	State at do f Noninear Case Loads from this previous case are inclu splied Use Modes from Case Load Name Scale Load Name Load Name Scale LATERAL_Y 1 LATERAL_Y 1	CGNL	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     P.Deta plus Large Displacements     Mass Source     PESO SISSMICO	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Monitored Displacement     Load to a Monitored Displacement     DoF U2 at Joint 53     Generalized Displacement     Additional Controled Displacements
Parameters IApplication Fuil Load Modify/Show OK Cancel Uts Saved Final State Only Modify/Show Cancel	Zero Initial Con ontinue from S ortant Note: Load Case Modal Loads A Load Type Load Type d Pattern id Pattern	Idions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu upplied Use Modes from Case Load Name Scale LATERAL_Y 1 LATERAL_Y 1 I	CGNL  V  ded in the current case  MODAL V  Factor  Add Modify Delete	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinear Nameters     None     P-Deta Public Large Displacements     Mass Source     PESO SISMICO	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Monitored Displacement     Load to a Monitored Displacement     O DF U2 at Joint 53     Generalized Displacement     Additional Controlled Displacements     None     Modify/Show
Appleation Full Load Modify/Show UN Cancel	Zero Initial Con ontinue from S ortant Note: Load Case Wodal Loads A Load Type Load Type Load Type d Pattern d Pattern	Iddons - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu upplied Use Modes from Case Load Name Scale LATERAL_Y 1 LATERAL_Y 1 I	CGNL  V ded in the current case MODAL V Factor Add Modify Delete	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinear Nameters     None     P-Deta Public Large Displacements     Mass Source     PESO SISMICO	Ful Load     Displacement Control Control Displacement     Use Conjugate Displacement     Use Monitored Displacement Load to a Monitored Displacement     O DF     U2     at Joint     S3     Generalized Displacement     Additional Controlled Displacement     Mone     Modify/Show
uts Saved Final State Only Modify/Show Cancel	Zero Initial Con continue from S ortant Note: Load Case Modal Loads A 6 Applied Load Type ad Pattern Ad Pattern	Idions - Start from Unstressed State State at End of Nonlinear Case Loads from this previous case are inclu upplied Use Modes from Case Load Name Scale LATERAL_Y 1 LATERAL_Y 1	CGNL  v ded in the current case MODAL v Factor Add Modify Delete	Linear     Nonlinear     Nonlinear Staged Construction     Geometric Nonlinearity Parameters     None     P-Deta     P-Deta     P-Deta     PESO SISMICO     NOL	Ful Load     Displacement Control Control Displacement     Use Conjugate Displacement     Use Monitored Displacement Load to a Monitored Displacement     O DoF     U2     at Joint     S3     Generalized Displacement     Modify/Show
	Zero Initial Con ontinue from S ortant Note: Load Case Iodal Loads A Applied Load Type d Pattern d Pattern Parameters Application	State at Card Monitorer State State State State at Card Monitorer Case Loads from this previous case are inclui Applied Use Modes from Case Load Name Coad Name Coad Name Coad Name Ful Load Ful Load Ful Load Ful Load	CSNL  V  ded in the current case  MODAL V  Factor  Add Modify Delete  Modify/Show	Linear     Nonlinear     Nonlinear Staged Construction Geometric Nonlinearity Parameters     None     P-Deta     P-Deta plus Large Displacements Mass Source PESO SISMICO OK	Ful Load     Displacement Control     Control Displacement     Use Conjugate Displacement     Use Monitored Displacement     Load to a Monitored Displacement     DoF U2  at Joint 53     Generalized Displacement     Additional Controlled Displacement     Mone Modify/Show     OK Cancel
	Zero Initial Con Continue from 5 portant Note: al Load Case I Modal Case I Modal Case Load Type ad Pattern ad Pattern r Parameters ad Application suits Saved	State at and of Nonlinear Case Loads from this previous case are inclu Applied Use Modes from Case Load Name Scale Load Name Load Name Load Name Scale Ful Load Ful Load Ful Load Ful Load Ful Load Ful Load Defaut Defaut Defaut	CSNL	Linear     Nonlinear     Nonlinear Staged Construction Geometric Nonlinear/Staged Construction     None     P-Deta     P-Deta     P-Deta plus Large Displacements Mass Source     PESO SISMICO     OK     Cancel	Full Load     Displacement Control Control Displacement     Use Conjugate Displacement     Load to a Monitored Displacement Load to a Monitored Displacement     Or U2     at Joint 53     Generalized Displacement     Modify/Show     OK Cancel

## PUSH_Y_NEG

	Load Case Name	Notes	Load Case Type
	PUSH_Y_NEG Set Def N	lame Modify/Show	Static V Design
	Initial Conditions		Analysis Type
	O Zero Initial Conditions - Start from Unstressed State	2	⊖ Linear
	Continue from State at End of Nonlinear Case	CGNL 🗸	Nonlinear
	Important Note: Loads from this previous case a	ire included in the current case	Nonlinear Staged Construction
	Modal Load Case		Geometric Nonlinearity Parameters
	All Modal Loads Applied Use Modes from Case	MODAL $\sim$	○ None
	Loads Applied		P-Detta
	Load Type Load Name	Scale Factor	P-Delta plus Large Displacements
	Load Pattern V LATERAL_Y V	-1.	Mass Source
	Load Pattern LATERAL_Y	-1. Add	PESO SISMICO ~
		Modify	
		Delete	
	Other Parameters		
	Load Application Displ Control	Modify/Show	ок
	Results Saved Multiple States	Modify/Show	Cancel
		modify/ono m	Califer
Y_NEG unditions ero Initial Conditions - : ntinue from State at E rtant Note: Load coad Case odal Loads Applied U	Set Def Name Modify/Show Start from Unstressed Stated of Nonlinear Case CGNL   is from this previous case are included in the current case se Modes from Case MODAL	Static      Design       Analysis Type         Linear         Nonlinear         Nonlinear Staged Construction        Geometric Nonlinearty Parameters        O None	Load Application Control for Nonlinear Static Analysis Load Application Control Ful Load  Ful Load  Displacement Control Use Conjugate Displacement Use Konjugate Displacement Use Konjugate Displacement Use Monitored Displacement
pplied		P-Detta     Detta plus Large Displacements	Load to a Monitored Displacement Magnitude of 0.47
Load Type	Load Name Scale Factor	<ul> <li>Proble plus carge displacements</li> </ul>	Lo
Pattern V LAT	(ERAL_Y ~ -1.	Mass Source	Monitored Displacement
LAI	Add	PESU SISMICU	▼ ● DOF U2
	Modify		Generalized Displacement
			Additional Controlled Display-sector
			Auditional Controlled Displacements
	Delete		
	Delete		None Modify/Show
irameters	Delete		None Modify/Show
rameters	Displ Control Month/rShow	ОК	None Modify/Show

## PUSH_Y_MODO3

Load Case Name		Notes	Load Case Type
PUSH_Y_MOD03	Set Def Name	Modify/Show	Static V Design
nitial Conditions			Analysis Type
Zero Initial Conditions -	Start from Unstressed State		O Linear
Continue from State at I	End of Nonlinear Case	cgnl $\sim$	Nonlinear
Important Note: Loa	ds from this previous case are inc	luded in the current case	O Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied U	se Modes from Case	MODAL $\sim$	O None
Loads Applied			P-Delta
Load Type	Load Name Sca	le Factor	P-Delta plus Large Displacements
Mode $\vee$ 3	1.		Mass Source
Mode 3	1.	Add	PESO SISMICO V
		Modify	
		Delete	
Other Parameters			
Load Application	Displ Control	Modify/Show	ОК
Results Saved	Multiple States	Modify/Show	Cancel
	Defeit	-	

Ҟ Load Case Data - Nonlinear	Static		>	<
Load Case Name           PUSH_Y_MODO3           Initial Conditions           Zero Initial Conditions - State           Image: Continue from State at End	Set Def Name	Notes Modify/Show	Load Case Type Static V Design Analysis Type O Linear (a) Nonlinear	Load Application Control for Nonlinear Static Analysis X
Important Note: Loads I Modal Load Case All Modal Loads Applied Use I Loads Applied Load Type Mode 3 Mode 3	Modes from Case Load Name Scale Fai	MODAL V Add Modify	Nonlinear Staged Construction Geometric Nonlinearity Parameters     None     P.Deta     P.Deta     P.Deta plus Large Displacements Mass Source PESO SISMICO	Control Displacement Control Displacement Use Conjugate Displacement Code to a Monitored Displacement Code to a Monitored Displacement Monitored Displacement Code to a Joint
Other Parameters Load Application Results Saved Nonlinear Parameters	Displ Control Multiple States Default	Delete Modify/Show Modify/Show	OK Cancel	Additional Controlled Displacements None Modify/Show OK Cancel

• Definición de las rótulas plásticas en columnas. Las columnas son elementos que trabajan a flexo compresión, por lo tanto, las rótulas plásticas dependen de la carga axial al que está sometida la columna.

A continuación, se presentan las cargas axiales para el cual se analizaron las rótulas plásticas de cada columna.

Columna	Nivel		Carga	Axial	
			(to	n)	
C1-30x60	1ro	130	85	35	0
	2do	130	85	35	0
	3er	130	85	35	0
C2-30x60	1ro	130	85	35	0
	2do	130	85	35	0
	3er	130	85	35	0
C3-25x30	1ro	50	35	16	0
	2do	50	35	16	0
	3er	50	35	16	0

#### - C1-30*60



✓ Primer nivel – Dirección XX



✓ Primer nivel – Dirección YY



💥 Moment Rotation Data for C1-30*60_P-M2-M3_1P - Interacting P-M2-M3 X	X Moment Rotation Data for C1-30*60_P-M2-M3_1P - Interacting P-M2-M3
Edit	Edit
Select Curve         Units           Axial Force         -35000.         ✓         Angle         90.         ✓         Curve #10         Kgf, m, C         ✓	Select Curve         Units           Axial Force         0.         ∨         Angle         90.         ∨         Curve #14         K gf, m, C         ∨
Moment Rotation Data for Selected Curve	Moment Rotation Data for Selected Curve
Point         Moment/Vield Mom         Rotation/SF           A         0.         0.           B         1.         0.           C         1.502         0.032           D         0.2         0.06           Copy Curve Data           Paster Curve Data	Point         Moment/Yield Mom         Rotation/SF           A         0.         0.           B         1.         0.           C         1.706         0.032           D         0.2         0.032           O         0.2         0.06           Copy Curve Data
Current Curve - Curve #10 3-D Surface Force #3; Angle #2 Axial Force = -35000	Current Curve = Curve #14 3-D Surface Force #4: Andle #2 Axial Force = 0
Acceptance Criteria (Plastic Deformation / SF) 3D View	Acceptance Criteria (Plastic Deformation / SF) 3D View
Immediate Occupancy 5.000E-03 Plan -90 🖨 Axial Force -35000	Immediate Occupancy 5.000E-03 Plan -90 📮 Axial Force 0
Life Safety 0.045 Elevation 90 Hide Backbone Lines	Life Safety 0.045 Elevation 90
Collapse Prevention 0.06 Aperture 0 Show Acceptance Criteria Show Acceptance Criteria	Collapse Prevention 0.06 Aperture 0 Show Acceptance Criteria Show Acceptance Criteria
Show Acceptance Points on Current Curve 3D RR MR3 MR2 Highlight Current Curve	Show Acceptance Points on Current Curve 3D RR MR3 MR2 G Highlight Current Curve

De esta forma se procede a definir todas las rótulas plásticas de columnas para cada nivel. Los valores se indican en el modelo inelástico elaborado con ayuda del software PTC MATHCAD PRIME 4.0

• Definición de las rótulas plásticas en vigas







De esta forma se procede a definir todas las rótulas plásticas de vigas. Los valores se indican en el modelo inelástico elaborado con ayuda del software PTC MATHCAD PRIME 4.0



• Asignamos ubicaciones para las rótulas plásticas de vigas y columnas.

- Columnas.

Assign name ninges	K Assign Frame Hinges X
Frame Hinge Assignment Data Relative Hinge Property Distance (2-30°60,P-M2-M3_1P v 0.79 (2-30°60,P-M2-M3_1P 0.05 (2-30°60,P-M2-M3_1P 0.79 Add Hinge Modify/Show Auto Hinge Delete Hinge	Relative           Relative           Usance         C2:30°60_P-M2-M3_1P         D85           C2:30°60_P-M2-M3_1P         0.05         C2:30°60_P-M2-M3_1P         0.05           C2:30°60_P-M2-M3_1P         0.05         C2:30°60_P-M2-M3_1P         0.05           C2:30°60_P-M2-M3_1P         0.05         C2:30°60_P-M2-M3_1P         0.05           C2:30°60_P-M2-M3_1P         0.05         C2:30°60_P-M2-M3_1P         D0.05           C2:30°60_P-M2-M3_1P         0.05         C2:30°60_P-M2-M3_1P         D0.05
X Assign Frame Hinges	K X Assign Frame Hinges

- Vigas

💢 Assign Frame Hinges	Х	< 🔀 Assign Frame Hinges	×
Frame Hinge Assignment Data         Relative           Hinge Property         Distance           V-30*65_(P13,5,7_BA_12_2)         0.92           V-30*65_(P13,5,7_BA_12)_M3         0.92	Add Hinge, Modify/Show Auto Hinge, Delete Hinge	Frame Hinge Assignment Data         Relative           Hinge Property         Distance           V-30*45_(P1,3,5,7_CB,1,2_V,05         0.95           V-30*45_(P1,3,5,7_CB,1,2)_M3         0.13           V-30*45_(P1,3,5,7_CB,1,2)_M3         0.95           Add H         Modify/Show           Delete         0	iinge Auto Hinge Hinge



De esta forma se procede a ubicar el modelo inelástico de vigas y columnas (Rótula plástica)



- Definimos las resistencias en los puntales que representan los muros de albañilería (Según E-070) Donde:
  - f'm= Resistencia a la compresión D= Longitud del puntal
- h= Altura del muro de albañilería
- L= Longitud del muro de albañilería
- t= Espesor efectivo de puntal
- fs= Resistencia última a cizalle de albañilería
- Resistencia al aplastamiento:  $R_C = 0.12xf'mxDxt$

Prime	r nivel	Segundo nivel		Tercer nivel	
f´m=	35 kg/cm2	f'm=	35 kg/cm2	f'm=	35 kg/cm2
D=	4.374 m	D=	4.276 m	D=	4.901 m
t=	0.25 m	t=	0.25 m	t=	0.25 m
Rc=	45,927 kg	Rc=	44,898 kg	Rc=	51,460.5 kg

- Resistencia a tracción diagonal:  $Rt = 0.85x\sqrt{f'mxDxt}$ 

Prime	r nivel	Segundo nivel		Segundo nivel Tercer nivel		nivel
f´m=	35 kg/cm2	f'm=	35 kg/cm2	f'm=	35 kg/cm2	
D=	4.374 m	D=	4.276 m	D=	4.901 m	
t=	0.25 m	t=	0.25 m	t=	0.25 m	
Rt=	54,988.483 kg	Rt=	53,756.459 kg	Rt=	61,613.75 kg	

	$1 - 0.4 \frac{1}{L}$	- ,			
Prime	r nivel	Segundo nivel Tercer nivel		nivel	
f´m=	35 kg/cm2	f´m=	35 kg/cm2	f´m=	35 kg/cm2
D=	4.374 m	D=	4.276 m	D=	4.901 m
t=	0.25 m	t=	0.25 m	t=	0.25 m
h=	2.900 m	h=	2.750 m	h=	3.646 m
L=	3.275 m	L=	3.275 m	L=	3.275 m
Rs=	67,729.787 kg	Rs=	64,385.747 kg	Rs=	88,356.132 kg

- Resistencia al cizalle:  $Rs = \frac{fs x t x D}{1-0.4\frac{h}{\tau}}$ , fs = 4 kg/cm2.

De todas las resistencias y para cada nivel se usará la más crítica.



• Para la evaluación de la estructura trabajaremos con rigideces agrietadas en vigas y columnas según la propuesta del ASCE 41-13. Seismic Evaluation and Retrofit of Existing Buildings.

	🗙 SD Section Data 🛛 🗙	Kectangular Section	Х
X Frame Properties	Section Name C1-30'60	Frame Properties Frame Property Stiffness Modification Factors  Properties	Display Color
Properties         C           Find this property:         C1.30*60           C1.30*60         C2.30*60           C2.30*60         C3.25*10           C2.30*60         C3.25*10           PUTRL_(P1.3.57; BC_2)         PUTRL_(P1.3.57; BC_2)           PUTRL_(P1.3.57; BC_2)         PUTRL_(P1.3.57; CD_2)           PUTRL_(P1.3.57; CD_2)         PUTRL_(P1.3.57; CD_2)           PUTRL_(P1.3.5	Property/Sliffness Modifiers for Analysis       Cross-section (axia) Area     1       Shear Area in 2 direction     0.4       Shear Area in 3 direction     0.4       Torsional Constant     1       Moment of Inertia about 2 axis     0.7       Moment of Inertia about 3 axis     1       Mass     1       Weight     1	Field his property:         Property(StTheses Modiles for Analysis         Sec           VL19VL (PL 12)         Child and analysis         Child analysis         Sec           PUIDLAL (PL 327: 00: 1)         P         Shear Area in 2 direction         0.4           PUIDLAL (PL 327: 00: 2)         Shear Area in 2 direction         0.4         Shear Area in 3 direction           VL19VL (PL 327: 00: 2)         Shear Area in 2 direction         0.4         Shear Area in 3 direction           VL19VL (PL 337: 00: 2)         Shear Area in 3 direction         0.4         Shear Area in 3 direction           VL19VL (PL 337: 40: 2)         VL19VL (PL 337: 40: 2)         Nomeer of herita about 2 axis         0.3           VL19VL (PL 337: 50: 2)         VL19VL (PL 337: 50: 2)         Nomeer of herita about 3 axis         0.3           VL19VL (PL 337: 50: 2)         VL19VL (PL 337: 50: 2)         Nome of herita about 3 axis         0.3           VL19VL (PL 337: 50: 2)         VL19VL (PL 337: 50: 2)         Nome of herita about 3 axis         0.3	tion a a a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b
ОК	OK Cancel	OK OK Cancel	Section Properties

• Procedemos a filtrar las demandas sísmicas: Sismo ocasional, Sismo raro y sismo muy raro.

💢 Define Response Spectrum Fur	nctions X
Define Response Spectrum Fur Response Spectra     SiSMO DE DISEÑO XX     SISMO DE DISEÑO YY     SISMO MUY RAPO XY     SISMO OLY RAPO XY     SISMO OCASIONAL XY     SISMO RARO XY	Choose Function Type to Add AASHTO 2006 Click to: Add New Function Show Spectrum Delete Spectrum
	OK Cancel



• Después de realizar todos estos procedimientos se obtiene la curva de capacidad y los puntos de desempeño para cada demanda sísmica.



## ANEXO 04

## PLANOS DE REPLANTEO

ARQUITECTURA Y ESTRUCTURA



	CUADRO DE VANOS					
	VENTANAS					
TIPO	ANCHO	ALTURA	ALFEIZAR	MATERIAL	CANTIDAD	
V-1	2.60	1.40	1.35	ALUMINIO	09	
V-2	3.70	1.40	1.35	ALUMINIO	09	
V-3	3.70	0.75	2.00	ALUMINIO	18	

	CUADRO DE VANOS				
			PUERTAS		
TIPO	ANCHO	ALTURA	ALFEIZER	MATERIAL	CANTIDAD
P-1	1.10	2.10	-	Madera	09

PROYECTO: DESEMPE	ño sismorre
LA INSTIT	Ución educa
UBICAC. Y LOCAL.	PLANO: AR
LUGAR: YANAHUANCA	PLAN
DIST.: YANAHUANCA	PROPIEDAD:
PROV.: DANIEL A. CARRIÓN	I.E. Ef
DPTO.: PASCO	DISEÑO: Bach. Alexis Ma



-						
	CUADRO DE VANOS					
	VENTANAS					
TIPO	ANCHO	ALTURA	ALFEIZAR	MATERIAL	CANTIDAD	
V-1	2.60	1.40	1.35	ALUMINIO	09	
V-2	3.70	1.40	1.35	ALUMINIO	09	
V-3	3.70	0.75	2.00	ALUMINIO	18	

	CUADRO DE VANOS				
PUERTAS					
TIPO	ANCHO	ALTURA	ALFEIZER	MATERIAL	CANTIDAD
P-1	1.10	2.10	-	Madera	09

PROYECTO: DESEMPEI	ŇO SISMORRESISTENTE DE
LA INSTIT	UCIÓN EDUCATIVA ERNES
UBICAC. Y LOCAL.	PLANO: ARQUITECTURA
LUGAR: YANAHUANCA	PLANTA SEGUNDO Y TERCER PIS
DIST.: YANAHUANCA	PROPIEDAD:
PROV.: DANIEL A. CARRIÓN	I.E. ERNESTO DIEZ CANSEC
DPTO.: PASCO	DISEÑO: Bach. Alexis Manuel ROBLES VALLE









ESPECIFICACIONES TECNICAS		
0 0	ZAPATAS, MURO DE CONTENCION	f'c = 210 kg/cm2
	COLUMNAS Y VIGAS	f'c = 210 kg/cm2
	COLUMNETAS Y VIGAS DE CONFIN.	f'c = 175 kg/cm2
	LOSA ALIGERADA Y ESCALERAS	f'c = 210 kg/cm2
го	SOLADO DE ZAPATA : 12 + 25% PM. 3" max. e=10 cm	
	CIMIENTO CORRIDO1 : 10 + 30% PG. 6" max.	
	SOBRECIMIENTO 1:8 + 25% PM. 3"	max.
	Fy = 4200 kg/cm2	
M.	ZAPATA	7.5 cm
	COLUMNAS	3.5 cm
	VIGAS	3.5 cm
	LOSAS ALIGERADAS	2.5 cm
RIA	SE REALIZARA CON LADRILLOS K.K DE 18 HUECOS	
	MORTERO 1:5 C:H	
	ESPESOR DE JUNTAS: e = 1.5 cm (maximo)	
	f'm= 35 kg/cm2	
PACIDAD PORTANTE DEL TERRENO: 1.50 kg/cm2		











ANEXO 05

# PANEL FOTOGRÁFICO

INVESTIGACIÓN DE CAMPO



Imagen 1. Vista frontal de la estructura del pabellón B de la Institución Educativa Ernesto Diez Canseco.



Imagen 2. Medición de secciones de columnas.



Imagen 3. Medición de secciones de vigas.



Imagen 4. Anotación de las mediciones.



Imagen 5. Aulas características del primer y segundo nivel



Imagen 6. Aulas características del tercer nivel



Imagen 7. Corredor típico del segundo y tercer nivel